Bitcoin – part 2

CS 161 Fall 2021 - Lecture 17
Announcements

• Started recording
• Midterm Thursday, Oct 7, 7-9pm
 – All logistics are on the website
 – Piazza @479 for logistics questions
Recall: Two components

1. **Ledger/blockchain:**
 1. publicly-visible,
 2. append-only, and
 3. immutable,

 Log
 via hash chain and consensus with proof of work

2. **Cryptographic transactions**
 via digital signatures
Recall: cryptographic transaction

- Identity is PK
 - Being able to use SK is proof of owning the identity

\[
TX = (PK_{sender} \rightarrow PK_{receiver}; X \฿; PK_{sender} \rightarrow PK_{sender}; R \฿; \text{list of transactions L where money came from})
\]

Initial budgets:

<table>
<thead>
<tr>
<th>PK_A has 10 ฿</th>
<th>TX_1 = (PK_A \rightarrow PK_B; 10 ฿; from initial budgets)</th>
<th>TX_2 = (PK_B \rightarrow PK_C; 5 ฿; PK_B \rightarrow PK_B; 5 ฿; from TX_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign_{SK_A}(TX_1)</td>
<td>sign_{SK_B}(TX_2)</td>
<td></td>
</tr>
</tbody>
</table>
Blockchain

- Chain transactions using their hashes => hashchain
- Each transaction contains hash of previous transaction (which contains the hash of its own previous transaction, and so on)
- Recall that a cryptographic hash is collision resistant

<table>
<thead>
<tr>
<th>time</th>
<th>block 1:</th>
<th>block 2:</th>
<th>block 3:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial budgets:</td>
<td>PK_A has 10 $</td>
<td>TX_1 = (PK_A->PK_B;10 $; from initial budgets; h(block 1))</td>
<td>TX_2 = (PK_B->PK_C;5 $; from TX_1; h(block 2))</td>
</tr>
<tr>
<td></td>
<td>PK_A has 10 $</td>
<td>sign_{SK_A}(TX_1)</td>
<td>sign_{SK_B}(TX_2)</td>
</tr>
</tbody>
</table>

block i refers to the entire block (transaction description and signature), so the hash is over all of this
Consensus

- Every participant stores a copy of the blockchain.
- Miners mine blocks by solving proof of work:
 - Find random number s.t. Hash(block || random_number) = 000...0000453a48b244
- When someone wants to create a new transaction, they broadcast the transaction to all miners.
- Everyone (miners, other participants) always prefer the longest correct chain.
- If majority of compute power is in the hands of honest miners, longest correct chain is with them too.
“Longest chain” wins

• Problem: What if two different parts of network have different hash chains?

• Solution: Whichever is “longer” wins; the other is discarded
How can we convince people to mine?

• A: Give a reward to anyone who successfully appends – they receive a free coin
 – Essentially they may include a transaction from no one to their PK having a coin

• Q: What happens to a miner’s reward if his block was removed because an alternate longer chain appears?
 • A: The miner lost their reward. Only the transactions and rewards on the longest chain “exist”.

Proof of work can be adapted

• Mining frequency is ~10 mins
• If it takes too long to mine on average, make the proof of work easier (less zeros), else make it harder (more zeros)
• Q: what is the economic insight?
• A: if mining is rare, it means few machines in the network, give more incentives to join the network
Let’s chew on consensus

• Q: What happens if Miner A and Miner B at the same time solve a proof of work and append two different blocks thus forking the network?

 A: The next miner that appends onto one of these chains, invalidates the other chain. Longest chain wins.

• Q: If a miner included your transaction in the latest block created, are you guaranteed that your transaction is forever in the blockchain?

 A: No, there could have been another miner appending a different block at the same time and that chain might be winning. So wait for a few blocks, e.g. 6 until your transaction is committed with high probability, though you can never be sure.
Let’s chew on consensus

• Q: What happens if a miner who just mined a block refuses to include my transaction?
• A: Hopefully the next miner will not refuse this. Each transaction also includes a fee which goes to the miner, so a miner would want to include as many transactions as possible
Watch the blockchain live

- https://blockchain.info/
Bitcoin

• Public, distributed, peer-to-peer, hash-chained audit log of all transactions (“block chain”).
• Mining: Each entry in block chain must come with a proof of work (its hash value starts with N zeros). Thus, appending takes computation.
• Lottery: First to successfully append to block chain gets a small reward (if append is accepted by others). This creates new money. Each block contains a list of transactions, and identity of miner (who receives the reward).
• Consensus: If there are multiple versions of the block chain, longest one wins.
So far …
unbiased Bitcoin technical design
Cryptocurrencies have supporters and opposers
Supporters say…

• No need to trust or depend on banks or the government
• “Digital gold” 📈
• User in control of their funds despite government policies or banks restrictions/crashes
• Transactions are pseudonymous
• Peer to peer, do not need approval of other entity
• No banking fees
• Low transaction fees for international payments
• Transactions are irreversible
• Anybody can partake, even people without bank accounts
Critics say…

- It brings waste (e.g., proof of work, many large copies of blockchain)
- Not as decentralized as we wished
- Not scalable
- Market fluctuations
- Not really anonymous
- Irreversible
- No security in case of loss
- Helps criminals, ransomware
What I think about it

• It has pros and cons
• I think they have brought about some very interesting and creative techniques in cryptographic systems, and stirred much innovation beyond Bitcoin:
 – smart contracts
 – consensus protocols
 – zero knowledge proofs and ledgers
 – blockchains and ledgers for medical and financial use cases
 – ledgers like Certificate Transparency solving decade old problem
Much innovation after Bitcoin

- I think the Bitcoin protocol is a strike of genius, because of the very creative way of combining different techniques, even if not perfect
- Lots of active development and ideas:
 - Proof of stake, Federated Byzantine agreement, Random committee selection (Algorand), …
 - ZK rollups for scalability
 - More progress needs to be made to solve some problems, but progress has been steady
- They also increased the public’s awareness towards the power of cryptography
Blockchains and Cryptocurrencies: DIE IN A FIRE
Why Is Cryptocurrency A Trash Fire?

- Disclaimer: Opinions are Nick's alone
 - Mining this space for comedy godl [sic], academic papers and general interest articles since 2013

- They can't work for legal payments
 - But do facilitate a multi-billion-dollar criminal ecology

- There is a ton of trust and central authorities in the system, their presence is just ignored
 - It is 9 orders of magnitude less efficient than distributed systems which articulate trust

- "Smart" contracts & "Decentralized" Apps/Finance aren't

- The entire space is a deeply negative sum natural Ponzi scheme
 - With a bunch of Live Action Roll Players (LARPers) replaying half a millennia of various financial failures
Irreversibility & Incompatibility

- Remember the premise:
 Alice sends 100 Dunning/Kreuggerands to Bob with no intermediaries that can block or reverse the transaction

- Modern finance:
 Everything electronic **must be reversible** for a limited period of time
 - Enables fraud **mitigation**: detect & respond, not just prevent fraud

- Means buying cryptocurrencies is expensive:
 - Ether the seller is giving credit
 - Or the seller must accept cash
 - Or the seller needs to wait

- And they are hard to store as well
 - If someone gets your private key...
So They Can't Work For Legal Payments!

• Any volatile cryptocurrency transaction for real-world payments requires two currency conversion steps
 • It is the only way to remove the volatility risk
 • Which is why companies selling stuff aren't actually using Bitcoin, but a service that turns BTC into Actual Money™
 • But if you believe in the cryptocurrency, you must hodl!

• Result is that the promised financial applications can never apply in volatile currencies like Bitcoin
 • Really Bitcoin et al are only appropriate for buying drugs, paying ransoms, hiring fake hitmen, money laundering...
And "Stablecoins" are no solution...

- Stablecoin: You have a trusted entity that takes dollars and issues cryptodollars
 - And will go the other way
 - This is called a **bank** and these are called **banknotes**!

- Pick one (or more) of three options
 - Be Visa or a regulated bank
 - No more anonymity, no more avoiding the laws
 - Be a "Wildcat Bank" from the 1800s
 - Print banknotes that aren't actually backed: Tether appears to prints new Tethers, loan them to associated entities which then buy up cryptocurrencies driving up the prices
 - Be "Liberty Reserve"
 - Avoid the laws...
 - And meet up with the FAFO Alligator
Bitcoin's Crime Against Nick: It Made Him BELIEVE In Money Laundering Laws

- There are lots of laws imposed on banks & money transmitters
 - AML: Anti-Money Laundering
 - KYC: Know Your Customer
- Cryptocurrency is designed to bypass all of this
 - "Censorship resistance"
- This has enabled crime both minor (online drug markets) and major (ransomware)
 - Ransomware: Break into a business, encrypt the data with a public key scheme and demand M$ to release the session keys to get the data back, a multi-billion-dollar a year mostly Russian industry
 - Regularly disrupts pipelines, hospitals, and many other businesses all the time
- Ransomware is entirely dependent on cryptocurrency
 - Banks would refuse to process ransom payments
 - Cash is heavy and would require picking up in person
Proof of Work mining creates a "Red Queen's Race"

- As long as there is more profit to be had, more mining occurs
- Net result is that, in steady state, all profits end up paying for electricity and mining rigs
- Currently Bitcoin is ~= Romania in power consumption and Ethereum is ~= Bangladesh

And really this is about solving the "sibyl problem"

- Someone creates a ton of fake identities:
 Proof of work is really proof of wasting energy as a way of preventing this
Security is Economics: PoW "Security" is Criminally Inefficient

- **Proof of work is provably wasteful**
 - It is proof of burning $X/hr on a system-wide basis

- **The security equation**
 - An attacker can earn $Y in an attack taking time T
 - PoW is secure if-and-only-if $Y < XT$
 - But an attacker only needs to attack for time T, defenders need to spend 24/7/365!

- **This also affects the real-world "wait" for security**
 - If your worry is attacks and you receive a value Y...
 You haven't really received it until Y/X time passes!

- **So "articulated trust" is vastly cheaper**
 - Take 10 trustworthy entities, each one has a Raspberry Pi that validates and signs transactions. In the end, 6 need to be honest (majority voting consensus)
 - This requires 100W of power and $500 worth of computers: **9 orders of magnitude** less power
 - But identified entities would need to respect KYC/AML regulations and couldn’t justify a $1T "market capitalization" for a system like that!
And There is a Ton of Trust in the "Trustless" Systems

- You have to trust at least a majority of the miners
 - So that 10x Raspberry Pi system is more meaningfully distributed in terms of trust!

- You have to trust the developers
 - They can and **have** reversed transactions even when proclaiming "Code is law!"

- You have to trust the libraries the developers use
 - Libraries can and **have** been corrupted to steal cryptocurrencies

- You have to trust the code things depend on is all **bug free!**
 - Because bugs can otherwise result in loss or theft
"Smart" Contracts & "Decentralized" Finance

- Real contracts are written in a formal-ish language called "legalese"
 - Sorta looks like English but not really
 - Standard contracts are cheap-to-free
 - Bespoke contracts are horribly expensive to create

- Remarkably forgiving formal-ish language:
 - There is a robust exception handling mechanism called "lawyers", "arbiters", and "courts"

- Hey, "Code is Law"
 - Lets change the language to something even uglier, remove the exception handling mechanism, and call it good!
 - Programs are deterministic:
 Every miner may run the program but will always get the same result
Reality: (Low Performance) Finance Bots

- Small programs that operate on money
 - "Piñatas for Blackhats to whack until the money rains out"
 - David Gerard
 - Record exploits have reached into hundreds of millions of $ of value!

- The real world has used finance bots for decades
 - But without public interaction (for exploitation) and on reversible fabrics (for bug mitigation)

- And the performance is dismal:
 - The Ethereum network's **productive** compute is ~1/10,000 of a RPi 4!

- So why "DeFi"?
 - "Can't sue me Bro, it is the decentralized program running the Ponzi scheme or creating the unregulated exchange in violation of every securities law!"
 - Please ignore that if the developers can fix bugs after release they are the central authority responsible for the particular code
Finance is **all** zero sum at best

- Every dollar "made" in cryptocurrency came from someone else
 - There is no dividends or interest flowing in unlike the stock or bond market
 - The ledger's utility value is effectively $0:
 - It is just a cryptographic timestamp service with a hash chain
 - Service that takes $H(M)$, returns $\text{Sign}(H(M), T, H(\text{Last Signed}))$
 - Ideas that have existed for 20+ years
- There is one other financial instrument like this: A Ponzi scheme
 - "Profits" from early investors is payment from the later investors
 - Note that formal Ponzi schemes are a criminal fraud!
 And lots of such explicit schemes in cryptocurrency-land
The Rest Is LARPing a Speedrun of 500 years of bad economics...

- "Gold Standard/Hard Money" types
- Almost every cryptocurrency exchange is full of frauds banned in the 1930s
- Ponzi schemes without postal reply coupons, including explicit ponzi schemes as "Smart Contracts"
- Every tradable ICO is really an unregulated security just like the plagues in the South Sea Bubble of 1720 usually as a "Smart Contract"
- Replicated rare tulips with rare cats on the Ethereum Blockchain as a "Smart Contract"! Time to party like it is 1637!
What About Non-Currency Blockchain Applications?

- Put A Bird Blockchain On It!
- "Private" or "Permissioned" Blockchain
 - Simply a cryptographically signed hashchain: Techniques known for >20 years!
 - The only value gained is you say "Blockchain" and idiots respond with "Take My Money!"
- "Public" Blockchains are grossly inefficient and can't actually deliver on what they promise
- And those proposing "blockchain" don't actually understand the problem space!
- Nick's Iron Law of Blockchain:
 "Anyone who says Blockchain can solve X doesn't understand X and can be safely ignored"
Solution?

- **Actually *Enforce the LAWS!***
 - Cryptocurrency's only "value" is evading regulations...
 So don't let them!

- Every ICO is an unlicensed security: the *Howey* test
 - "An investment contract for purposes of the Securities Act means a contract, transaction or scheme whereby a person invests his money in a common enterprise and is led to expect profits solely from the efforts of the promoter or a third party, it being immaterial whether the shares in the enterprise are evidenced by formal certificates or by nominal interests in the physical assets employed in the enterprise."

- Lots of money transmitters who aren't acting like it
 - The cryptocurrency miners *are* money transmitters, they *can and have censored transactions!*

- Lots evading consumer protection regulations
 - Your bank account gets hacked? You get made whole
 - Your coinbase account gets hacked? Sorry for your loss!

- Lots of "Decentralized in Name Only" DeFi systems
- And lots and lots and lots of outright criminality
So Where Does This Leave Us?