AES-EMAC

\[\text{MAC}(K, M) = T \quad M = P_1 P_2 \ldots P_n \]

\[K_1 \quad K_2 \]

\[P_1 \]

\[\text{AES}_{K_1} \]

\[S_1 \]

\[P_2 \]

\[\text{AES}_{K_1} \]

\[\ldots \]

\[\text{AES}_{K_1} \]

\[\text{AES}_{K_2} \]

Consider \(H(M) = \text{MAC}(K, M) \) hash definition known to attacker

\[P_i \cup P_2 \cup \ldots \cup P_n \rightarrow T \]

\[(S_1 \oplus P_2) \rightarrow P_n \rightarrow T \]
HMAC is both a MAC and collision resistant when the attacker has key K.

\[\text{HMAC}(K, M) = H(K \oplus \text{pad} || H(K \oplus \text{ipad} || M)) \]

Assume H is a collision resistant hash $0x5c...5c$ $0x36...3c$

Why collision resistant? Because H is CR

Assume $H(\text{HMAC}(K, M_1)) = \text{HMAC}(K, M_2)$

\[\Rightarrow K \oplus \text{pad} || H(K \oplus \text{ipad} || M_1) = K \oplus \text{pad} || H(K \oplus \text{ipad} || M_2) \]

\[\Rightarrow K \oplus \text{ipad} || M_1 = K \oplus \text{ipad} || M_2 \]

\[\Rightarrow M_1 = M_2 \]