Symmetric Key Encryption

Alice
\[M \]
\[K \]
\[c \text{ symmetric}\]

How can Alice communicate \(M \) to Bob with Eve learning \(M \)?

Bob
\[K \]

\[Enc \]

\[c \leftarrow Enc(K, M) \]
\[m \leftarrow Dec(K, c) \]

Needs to provide confidentiality i.e. \(c \) to hide all information about \(M \) besides the length.

Why? Assume some static CT size \(n \)

1) Can't encrypt messages longer than \(n \)
2) Encrypting small messages is wasteful

Symmetric Encryption Scheme (API):

Keygen() \(\rightarrow K \)
Enc(k, M) \(\rightarrow C \)
Dec(K, C) \(\rightarrow M \)

Correctness: \(\forall K \forall M, c \leftarrow Enc(K, M): Dec(K, C) = M \)

Security: ?
→ Adv. knows Keygen, Enc, Dec but doesn't know K

Naive Idea: Given C, an Adv. can't recover M
→ not good enough. Doesn't deal w/ partial info. leakage

Ex.

1) Database which holds deterministic encryptions of students' grades
 → Adv. can learn which students have the same grade
 → Given value of one CT, the Adv. can decrypt many
2) Database which holds encrypted hospital records which indicate whether a patient has cancer or not (Yes/No). Enc leaks first letter of message.

→ Adv. can recover M 100% of the time

Goal: No partial info about M may leak b/c an Adv. can couple it w/ side info. to reconstruct M
The diagram illustrates a cryptographic protocol involving a challenger and an adversary (Adv.).

Query Phase
- The challenger generates an encryption of a message `M` using a key `K` and a scheme `C ≜ \text{Enc}(K, M)`.
- The adversary `O` is given `C`.

Challenge Phase
- `b \leftarrow \{0, 1\}` is randomly chosen.
- `M_0, M_1` are two messages.
- `C_b \leftarrow \text{Enc}(K, M_b)` is generated.

Query Phase (continued)
- Another encryption `C` of `M` is generated using the same key `K`.

The adversary `O` can query messages `M_0` and `M_1` already tested, and `Query phase can be used to abuse leakage or determinism`.

Additionally, it is stated that `\Pr[b = b'] \leq \frac{1}{2} + \epsilon`,
IND-CPA ensures a correct scheme is:

1) Non-deterministic
 — If not, we can query the same messages used in the challenge

2) Confidential
 — If not, we can make queries to leak which challenge message was chosen

For all adversaries!