Midterm Review - Symmetric Cryptography

Question 1 True/false

Q1.1 True or False: All cryptographic hash functions are one-to-one functions.
- [] True
- [] False

Q1.2 True or False: If k is a 128 bit key selected uniformly at random, then it is impossible to distinguish $AES_k(\cdot)$ from a permutation selected uniformly at random from the set of all permutations over 128-bit strings.

Clarification made during the exam: $AES_k(\cdot)$ refers to the encryption function of AES using key k.
- [] True
- [] False

Q1.3 True or False: A hash function that is one-way but not collision resistance can be securely used for password hashing.
- [] True
- [] False

Q1.4 True or False: A hash function whose output always ends in 0 regardless of the input can’t be collision resistant.
- [] True
- [] False
Question 2 \textit{AES-CBC-STAR} \hspace{1cm} (13 min)

Let E_k and D_k be the AES block cipher in encryption and decryption mode, respectively.

Q2.1 We invent a new encryption scheme called AES-CBC-STAR. A message M is broken up into plaintext blocks M_1, \ldots, M_n each of which is 128 bits. Our encryption procedure is:

\begin{align*}
C_0 &= \text{IV (generated randomly)}, \\
C_i &= E_k(C_{i-1} \oplus M_i) \oplus C_{i-1},
\end{align*}

where \oplus is bit-wise XOR.

\begin{itemize}
 \item Write the equation to decrypt M_i in terms of the ciphertext blocks and the key k.
\end{itemize}

Q2.2 Mark each of the properties below that AES-CBC-STAR satisfies. Assume that the plaintexts are 100 blocks long, and that $10 \leq i \leq 20$.

\begin{itemize}
 \item Encryption is parallelizable.
 \item Decryption is parallelizable.
 \item If C_i is lost, then C_{i-1} can still be decrypted.
 \item If we flip the least significant bit of C_i, this always flips the least significant bit in P_i of the decrypted plaintext.
 \item If we flip a bit of M_i and re-encrypt using the same IV, the encryption is the same except the corresponding bit of C_i is flipped.
 \item If C_i is lost, then C_{i+2} can still be decrypted.
 \item If we flip the least significant bit of C_i, this always flips the least significant bit in P_{i+1} of the decrypted plaintext.
 \item It is not necessary to pad plaintext to the blocksize of AES when encrypting with AES-CBC-STAR.
\end{itemize}

Q2.3 Now we consider a modified version of AES-CBC-STAR, which we will call AES-CBC-STAR-STAR. Instead of generating the IV randomly, the challenger uses a list of random numbers which are public and known to the adversary. Let IV_i be the IV which will be used to encrypt the ith message from the adversary.

\begin{itemize}
 \item Argue that the adversary can win the IND-CPA game.
\end{itemize}
Question 3 (12 min)

Alice comes up with a couple of schemes to securely send messages to Bob. Assume that Bob and Alice have known RSA public keys.

For this question, Enc denotes AES-CBC encryption, H denotes a collision-resistant hash function, $\|\$ denotes concatenation, and \oplus denotes bitwise XOR.

Consider each scheme below independently and select whether each one guarantees confidentiality, integrity, and authenticity in the face of a MITM.

Q3.1 (3 points) Alice and Bob share two symmetric keys k_1 and k_2. Alice sends over the pair $[Enc(k_1, Enc(k_2, m)), Enc(k_2, m)]$.

☐ (A) Confidentiality ☐ (C) Authenticity ☐ (E) —
☐ (B) Integrity ☐ (D) — ☐ (F) —

Q3.2 (3 points) Alice and Bob share a symmetric key k, have agreed on a PRNG, and implement a stream cipher as follows: they use the key k to seed the PRNG and use the PRNG to generate message-length codes as a one-time pad every time they send/receive a message. Alice sends the pair $[m \oplus \text{code}, HMAC(k, m \oplus \text{code})]$.

☐ (G) Confidentiality ☐ (I) Authenticity ☐ (K) —
☐ (H) Integrity ☐ (J) — ☐ (L) —

Q3.3 (3 points) Alice and Bob share a symmetric key k. Alice sends over the pair $[Enc(k, m), H(Enc(k, m))]$.

☐ (A) Confidentiality ☐ (C) Authenticity ☐ (E) —
☐ (B) Integrity ☐ (D) — ☐ (F) —

Q3.4 (3 points) Alice and Bob share a symmetric key k. Alice sends over the pair $[Enc(k, m), H(k \| Enc(k, m))]$.

☐ (G) Confidentiality ☐ (I) Authenticity ☐ (K) —
☐ (H) Integrity ☐ (J) — ☐ (L) —