
Popa & Wagner
Spring 2020

CS 161
Computer Security Project 2

An End-to-End Encrypted File Sharing System
In this project, you will design and implement a secure file sharing system in Go. Imagine something
like Dropbox, but secured with cryptography so that the server cannot see your data or tamper
with it.

Logistics:

� Team size: Up to two students.

� Design doc due date: March 6 2020, 11:59 pm.

� Implementation and revised design doc due date: March 20 2020 March 31, 11:59 pm.

1 Project Overview
You will build the client for a file sharing system. The client will allow users to store and load files,
share files with other users, and revoke access to a shared file from other users.

Users of your application will launch your client and provide their username and password. Once
authenticated, they will use your client to upload and download files to/from the server. Your client
will be the interface through which users can interact with the files stored on the server.

You will implement 8 functions on the client: InitUser, GetUser, StoreFile, AppendFile, LoadFile,
ShareFile, ReceiveFile, and RevokeFile. In addition, you will write tests to ensure the robustness
of your client. We include some basic functionality tests, but it is up to you to create a thorough
test suite to cover different attacks.

We provide 2 servers that you can use:

• The first server, Keystore, provides a public key store for everyone. It is trusted.

• The second server, Datastore, provides key-value storage for everyone. It is untrusted.

Using just these two servers and your knowledge of computer security, you will implement the 8
functions above to provide a secure application. Please note that your design will have to take
into account how to ensure confidentiality and integrity of files in addition to the basic file-sharing
functionality. Your client must also be stateless; if the client is restarted, it must be able to pick up
where it left off given only a username and password.

2 Environment Setup
Please complete the following four steps to get started:

• Install Golang (link).

Page 1 of 8

https://golang.org/doc/install


• Complete the online Golang Tutorial (link).

• Download the skeleton code (§2.1).

• Read the functionality specifications (§3).

2.1 Skeleton code and user library
Skeleton code. You will use the following template for this project:

https://cs161.org/assets/projects/2/proj2.tar

All of your code should go to proj2.go and proj2_test.go:

• proj2.go: Your implementation goes here.

• proj2_test.go: Your tests go here.

User library. We have provided some useful functions in userlib.go. To fetch this library, run:

go get -u github.com/cs161-staff/userlib/

You can familiarize yourself with these functions by reading the online documentation (includes
both userlib API and implementation requirements for individual functions):

https://cs161.org/assets/projects/2/docs/index

We also provide the source code for this library:

https://github.com/cs161-staff/userlib/

3 Functionality specifications
We provide detailed specifications for the functionality your client must implement, by specifying
the desired behavior of each of the 8 client-side functions you must implement. These specifications
are online (not in this document); see Sections 5–6 of

https://cs161.org/assets/projects/2/docs/index

4 Staff advice
• Design a solution before starting the implementation. Students consistently agree that design is

harder than implementation across multiple iterations of this project. A faithful implementation
of a faulty design will not earn you many points.

• To approach the design process, read the functionality specs, and think about how you will
provide the required functionality. It might be helpful to think about where you will store
data, what data will be stored on which server, and what data structure you will use to store
the data.

• If you are stuck, it is fine to start by figuring out how to provide the store/load functionality
without worrying about sharing yet. While you might need to later change your design to
support secure sharing, this project is much easier to grasp when sharing is not involved.

Project 2 Page 2 of 8 CS 161 – Spring 2020

https://tour.golang.org/welcome/1
https://cs161.org/assets/projects/2/proj2.tar
https://cs161.org/assets/projects/2/docs/index
https://github.com/cs161-staff/userlib/
https://cs161.org/assets/projects/2/docs/index


• Make sure your implementation does not panic on the basic functionality tests provided in the
skeleton. An implementation that panics on those tests will get a zero in the code section.

• Submit to the autograder once in a while. The autograder will warn you if your implementation
panics in any of the hidden tests.

5 Threat model
We provide a trusted keystore server. The keystore server is trusted and will behave honestly. No
adversary will be able to maliciously overwrite or tamper with a key record stored on the keystore
server.

We provide an untrusted datastore server. The adversary is assumed to control the datastore server
and the network. The adversary can view, record, modify, and/or add any key-value pair stored
in the datastore server. In addition, the adversary can observe which users store each key-value
pair and the order in which key-value pairs are stored, viewed, or deleted. The adversary can also
view and modify any access_token(s) generated by ShareFile when users share files with each
other. You should assume that the adversary knows the design of the system and all specifics of
your implementation.

We also assume that the adversary controls one or more malicious users. It is possible that a
legitimate user might share a file with a malicious user. If so, the adversary can record all relevant
information about the file (including any cryptographic material and any access_token(s) generated
by ShareFile) and remember it, even if access to the file is later revoked.

Finally, the adversary can read the contents of the public keystore and take advantage of automation
and brute-forcing, constrained by practical limits.

6 Clarifications
• You may assume each user has a unique username, which can be of any length but not empty.

• Do not assume each user has a unique password. Two users might happen to choose the same
password.

• You may assume each user’s password generally is a good source of entropy, except the attackers
may possess a precomputed lookup table containing hashes of common passwords downloaded
from the internet.

• Do not assume every file has a unique name. User A can have a file named foo, but that should
not prevent user B from naming one of their file foo.

• Files and filenames can be any length, including length of zero (empty string).

• The number of files associated with a user does not need to be hidden.

• It is okay if a malicious server can “roll back” the contents of a file to an older version (you
do not need to detect this). However, a malicious datastore server should not be able to fool
LoadFile into returning a version that mixes old and new data.

• You do not have to implement the passing of access_token from one user to another. You
just have to implement ShareFile and ReceiveFile, and passing of access_token will be

Project 2 Page 3 of 8 CS 161 – Spring 2020



done for you.

7 General Implementation Requirements
• No global variables. Global constants are fine.

– All the functions you write in proj2.go must be stateless; any data requiring permanent
storage should be stored in the Keystore or Datastore.

• Return nil as the err iff an operation succeeds. Return a value other than nil as an error iff
an operation fails.

• Your functions must return an error if malicious action prevents them from functioning properly.
Do not panic, do not segfault; return an error.

• You must support multiple active instantiations of a given user.

– For example, there can be two instances of a user U, U1 and U2 (one running on a laptop
and one running on a phone), created by two calls to GetUser() with the same credentials.

– Example: After U1 stores a file F1, U2 must be able to download it (immediately).

– Example: After U1 appends to F1, U2 must be able to download the updated version.

– Example: After U1 received a file F2 via ReceiveFile, U2 must be able to download it.

– You do not have to support concurrency; assume individual operations will be done
serially.

• Your solution must protect the confidentiality and integrity of the contents of all files and
access_token(s) generated by ShareFile.

– Only authorized users—those who have been shared the file, and aren’t revoked—should
be able to read the contents of files.

– Any breach of IND-CPA-security constitutes loss of confidentiality.

– Avoid reusing the same key for multiple purposes (encryption, authentication, key-
derivation, etc), authenticate-then-encrypt, and decrypt-then-verify. These are dangerous
design patterns that often lead to subtle vulnerabilities. We test for them and treat any
instance of them as a breach of confidentiality/integrity for purposes of grading.

• Filenames must be confidential. An adversary should not be able to guess the length of any
filename, or even narrow down the set of possible values for its length. Lengths of file contents
do not need to be hidden.

This is not a complete list of properties that must be guaranteed by your client implementation.
Refer to the documentation for specific requirements of individual functions (§3).

Project 2 Page 4 of 8 CS 161 – Spring 2020



8 Deliverables

8.1 Client Implementation
You must implement the following functions in proj2.go.

• InitUser(username string, password string) (userdataptr *User, err error)

• GetUser(username string, password string) (userdataptr *User, err error)

• StoreFile(filename string, data []byte)

• LoadFile(filename string) (data []byte, err error)

• AppendFile(filename string, data []byte) (err error)

• ShareFile(filename string, recipient string) (access_token string, err
error)

• ReceiveFile(filename string, sender string, access_token string) error

• RevokeFile(filename string, target_username string) error

You are allowed and encouraged to write any structs or helper functions to aid your implementation,
but all of your code must be contained in proj2.go.

The functionality, efficiency and security properties that must be satisfied by each function are
provided in the relevant section of the online documentation. (§3)

You are not allowed to import any library other than those already listed in the template code.

8.2 Tests
Write tests for your client. Your tests should test for correct functionality of the client, correct
handling of erroneous inputs, and any security problems you can easily test for. Add your tests to
proj2_test.go. Each test should go in a new function. We have provided several basic functionality
tests as reference. To test your code, run the following command on the terminal:

go test -v

Your tests will be graded. (§9)

8.3 Design Document
Write a clear, concise design document of your implementation.

Section 1: System Design [maximum 2 pages, plus an optional page of diagram]

� Summarize the design of your system. Explain the major design choices you made, written in a
manner such that an average 161 student could take it, re-implement your client, and achieve a
grade similar to yours.

As a part of your design document, answer the following questions about your design in number-list
format:

Project 2 Page 5 of 8 CS 161 – Spring 2020



1. How is a file stored on the server?

2. How does a file get shared with another user?

3. What is the process of revoking a user’s access to a file?

4. How does your design support efficient file append?

Section 2: Security analysis [maximum 1 page]

� Present at least three and at most five concrete attacks that an attacker may conduct and
explain how your design protects against each attack. You should not need more than one paragraph
per analysis. You will be graded on the three analyses which provide the most credit.

You must make sure your attacks:

• Cover different aspects of the design of your system. That is, don’t provide three attacks all
involving file storage but nothing involving sharing or revocation.

• Do not include any of the following three kinds of attacks:

– Breach of confidentiality of unencrypted data.

– Breach of integrity of unauthenticated data.

– An attack that results in leaking the length of a filename.

An example of a more sophisticated analysis is provided here:

“After user A shares a file with user B and later revokes access, user B may try to call ReceiveFile
with the original access token to regain access to the file. To prevent a revoked user from
regaining access this way, our design...”

This analysis is satisfactory because it describes a concrete attack that can be derived from
the provided threat model (§5) and the function description as specified in the online doc (§3).
You may not discuss this specific attack in your part 2 writeup.

The attack you describe must have a security consequence: It cannot be a simple bug. The
attack must result in an attacker discovering forbidden information or executing an unprivileged
action.

Project 2 Page 6 of 8 CS 161 – Spring 2020



9 Grading
You will receive three grades for this project.

Autograded code [100 pt] and test score [20 pt]

We will test your implementation of the client with a series of functionality and security tests to
determine your code score. Due to the nature of computer security, most of the tests are hidden.
Some test results are available before the deadline, and others will only be available after the
deadline.

Each failed code test will incur a multiplicative penalty on your score. This means each subsequent
test you fail has less impact on your grade, and vice versa. This is to emulate an environment where
the existence of a vulnerability is more important than the exact scope of the vulnerability.

Note that your implementation must at the very least not panic on the tests provided in the skeleton.
An implementation that panics on the provided tests will not receive a code score of 0.

We will also test the staff implementation of the client with the tests you wrote. We check the
coverage of your tests: many lines in the staff implementation are instrumented so that, if they are
executed by one of your tests, you will receive a point towards your test score. A comprehensive test
suite will have better coverage and increases your score. Your test score will be visible on Gradescope
before the deadline.

Note that the autograder will run multiple fixed random seeds for each test. Because your code
must be robust to failures, we will take the lowest score across these multiple runs as the score for
your code. Thus, any nondeterminism introduced by your code will be penalized.

Design document score [15 pt]

Your design [9 pt] and security analysis [6 pt] will be graded on clarity and quality in accordance
with the requirements outlined in the relevant section of the design doc (§8.3).

Your design document must be submitted by the checkpoint due date. You will have a chance to
revise your design and resubmit it by the implementation due date.

The late penalty is calculated individually for the two deadlines. Late submission for the design doc,
for example, will not penalize an on-time code submission.

9.1 Autograder rules
No adversarial behavior. Your implementation will be autograded against a series of hidden
tests. The autograder flags and rejects any submission that imports new libraries or attempts to:

• Spawn other processes.

• Read or write to the file system.

• Create any network connections.

• Attack the autograder by returning long, long output.

Code will run in an isolated sandbox. Adversarial behavior will be dealt as cheating.

Project 2 Page 7 of 8 CS 161 – Spring 2020



10 Submission and Deliverables Summary
There are three submissions on Gradescope, as follows:

• Implementation and testing: submit

proj2.go
proj2_test.go

• Design document checkpoint: submit

design.pdf

• Revised design document: submit

design.pdf

Project 2 Page 8 of 8 CS 161 – Spring 2020


	Project Overview
	Environment Setup
	Skeleton code and user library

	Functionality specifications
	Staff advice
	Threat model
	Clarifications
	General Implementation Requirements
	Deliverables
	Client Implementation
	Tests
	Design Document

	Grading
	Autograder rules

	Submission and Deliverables Summary

