
Popa & Wagner
Spring 2020

CS 161
Computer Security Notes

Lecture notes by Nicholas Weaver, David Wagner, Peyrin Kao, Andrew Law

Contact for corrections: Peyrin Kao (peyrin at berkeley.edu)

Disclaimer: These notes are still in beta and haven’t been thoroughly fact-checked. In
any factual dispute, all other course material takes precedence. Any feedback is welcome.

1 Intro to Internet
1.1 Internet layering
Consider sending a letter using snail mail. You’d seal your letter in an envelope with your
friend’s address on it. The post office delivers the letter to the address, where your friend
can open the letter and read it.

The protocols for sending messages over the Internet follow a very similar structure. We
generally talk about the network in terms of layers, based on the OSI 7-layer model. Higher
layers, like the letter you wrote, contain richer information, and they are wrapped inside
lower layers, like the envelope, which contain information about where and how the message
should be sent. It might also help to view the layers as an onion, where each layer is peeled
back to reveal the next higher layer.

The OSI model dates back to the late 1970s and is somewhat outdated, so we really only
concern ourselves with 5 layers. The model is supposed to allow higher layers to abstract
away any details at lower layers, but as we will see, many of the security protocols don’t fit
into one single layer.

7. Application. This is the human-readable content you want to send, such as the HTML
of a webpage or the text of an email. The actual structure of this content depends on what
exactly your application is.

4. Transport. This layer creates an end-to-end connection between your server and the
destination server you want to communicate with. The two main options here are to use
TCP, which guarantees that messages are sent in order, or UDP, which doesn’t.

3. Network. This layer finds routes through the Internet in order to actually send messages.
The IP address protocol is used here to give a global address to every location on the network.

2. Link. This layer breaks down the routes in the network layer into individual hops
between local subnetworks. It takes many hops at the link layer in order to route a message.

1. Physical. This is the lowest layer, where individual bits are encoded with physical
protocols such as voltage levels to send them over a link.

Notes Spring 2020 1 of 25

https://en.wikipedia.org/wiki/OSI_model

1.2 Dumb network
Notice that in the postal system example, the post office has no idea if you and your pen
pal are having a conversation through letters. The Internet is the same - at the physical,
link, and network layers, there is no concept of a connection. All the routers at the lower
layers need to do is look at a packet and deliver it to the proper destination. In order to
actually create a connection, we rely on the transport and application layers, which establish
a connection by sending packets between you and the destination using protocols at those
layers.

1.3 Network Adversaries
For a given connection, we are concerned with three separate types of adversaries. They are,
from weakest to strongest:

Off-path Adversaries: cannot read or modify any messages sent over the connection.

On-path Adversaries: can read, but not modify messages.

In-path Adversaries: can read, modify, and block messages. Also known as a man-in-
the-middle.

Note that all adversaries can send messages of their own, including faking or spoofing the
messages to appear like they are coming from somebody else. This is often as simple as
setting the “source” field on the message to somebody else’s address.

Notes Spring 2020 2 of 25

2 Lower Layers: ARP, DHCP
2.1 Networking background: LANs, Ethernet
Computers in a small area (an office or a university campus, for example) connected through
the link layer form a local area network (LAN).

The most common link layer is Ethernet, which assigns a 6-byte MAC address (Media
Access Controller address) to each computer on the LAN. This is not to be confused with
MACs (message authentication codes) from the crypto section, which we will rename as
MICs (message integrity codes) for the networking unit. MAC addresses are usually written
as 6 pairs of hex numbers, such as ca:fe:f0:0d:be:ef. There is also a special MAC address,
the broadcast address of ff:ff:ff:ff:ff:ff, that says “send this frame to everyone on the
local network”.

Ethernet started as a broadcast-only network. Each node on the network could hear all other
nodes, either by being on a common wire or a network hub, a simple repeater that took
every packet it received and rebroadcast it to all the outputs. A receiver is simply supposed
to ignore all frames not sent to either the receiver’s MAC or the broadcast address. But
this is only enforced in software, and most Ethernet devices can enter promiscuous mode,
where it will receive all frames. This is also called sniffing packets.

For versions of Ethernet that are inherently broadcast, such as a hub, an adversary in the
local network can see all network traffic and can also introduce any traffic they desire by
simply sending packets with a spoofed MAC address. Sanity check: what type of adversary
does this make someone on the same LAN network as a victim?1

2.2 ARP
2.2.1 Protocol
From unpacking the layer 3 (network) header, we have the global IP address of the destina-
tion. However, at the link layer, everything is addressed with local MAC addresses. Thus
we need a way to translate global IP addresses into local MAC addresses. The protocol that
does this is ARP, the Address Resolution Protocol.

Say Alice wants to send a message to Bob, and knows Bob’s IP address is 1.1.1.1. The
ARP protocol would follow three steps:

1. Alice would broadcast to everyone else on the LAN “What is the MAC address of
1.1.1.1?”

2. Bob responds by sending a message only to Alice “My IP is 1.1.1.1 and my MAC
address is ca:fe:f0:0d:be:ef.”

3. Alice caches the IP address to MAC address mapping for Bob.

1A: On-path

Notes Spring 2020 3 of 25

If Bob is outside of the LAN, then the gateway would make response in step 2 with its MAC
address.

Any received ARP replies are always cached, even if no broadcast request (step 1) was ever
made.

2.2.2 Attack: ARP Spoofing
Because there is no way to verify that the reply in step 2 is actually from Bob, it is easy to
attack this protocol. If Mallory is able to create a spoofed reply and send it to Alice before
Bob can send his legitimate reply, then she can convince Alice that Mallory’s MAC address
belongs to Bob. Now, Alice will send any messages intended for Bob to Mallory. Sanity
check: what type of adversary is Mallory after she executes an ARP spoof attack?2

ARP spoofing is our first example of a race condition, where the attacker’s response must
arrive faster than the legitimate response to fool the victim. This is a common pattern for
on-path attackers, who cannot block the legitimate response and thus must race to send
their response first.

2.2.3 Defenses: Switches
A simple defense against ARP spoofing is to use a tool like arpwatch, which tracks the IP
address to MAC address pairings and makes sure nothing suspicious happens.

Modern wired Ethernet networks defend against ARP spoofing by using switches rather
than hubs. Switches have a MAC cache, which keeps track of the IP address to MAC address
pairings. If the packet’s IP address has a known MAC in the cache, the switch just sends
it to the MAC. Otherwise, it broadcasts the packet to everyone. Smarter switches can filter
requests so that not every request is broadcast to everyone.

Higher-quality switches include VLANs (Virtual Local Area Networks), which implement
isolation by breaking the network into separate virtual networks. VLANs also have the
ability to configure a mirror port, which sends a copy of all packets transmitted to a specific
port for network monitoring.

2.3 DHCP
2.3.1 Protocol
DHCP (Dynamic Host Configuration Protocol) handles the setup when a computer
first joins a network. In order to connect to a network, you need a few things:

• an IP address, so other people can contact you

• the IP address of the DNS server, so you can translate a site name www.google.com
into an IP address (we will cover DNS in detail later)

• the IP address of the gateway, so you can contact the Internet

2A: Man-in-the-middle

Notes Spring 2020 4 of 25

The DHCP handshake follows four steps, between you (the client) and the server (who can
give you the needed IP addresses)

1. Client Discover: The client broadcasts a request for a configuration.

2. Server Offer: Any server able to offer IP addresses responds with some configuration
settings. (In practice, usually only one server replies here.)

3. Client Request: The client broadcasts which configuration it has chosen.

4. Server Acknowledge: The chosen server confirms that its configuration has been
chosen.

Notice that both client messages are broadcast. Client request must be broadcast so that
all the servers know which one has been chosen. Sanity check: why must client discover be
broadcast?3

Sanity check: How might an adversary attack this protocol? See next section for answer.

2.3.2 Attack
The attack on DHCP is almost identical to ARP spoofing. At the server offer step, an
attacker can send a forged configuration, which the client will accept if it is sent quickly
enough. The attacker now controls the client’s gateway, which makes the attacker a man-in-
the-middle, just like in ARP spoofing. The attacker can also become a man-in-the-middle
by manipulating the DNS setting or by offering its own IP as the gateway address, which
causes all packets sent to the victim to be rerouted to the attacker.

2.3.3 Defenses
In reality, many networks just accept DHCP spoofing as a fact of life and rely on the higher
layers to defend against attackers (the general idea: if the message sent is properly encrypted,
the man-in-the-middle can’t do anything anyway).

Defending against low-layer attacks like DHCP spoofing is hard, because we lack a trusted
foundation to build upon when we’re first connecting to the network.

3A: Before DHCP, the client has no idea where the servers are.

Notes Spring 2020 5 of 25

3 Layer 3: IP
IP (Internet Protocol) is basically the universal layer 3, designed to connect “networks of
networks” by sending network packets. There are two primary versions, IPv4 and IPv6.
For most of the class we only consider IPv4 but the protocols are generally similar. The
biggest difference between v4 and v6 is the size of addresses and therefore the # of unique
destinations available. For IPv4 the address is a 32b number, usually written as 4 integers
between 0 and 255, such as 128.32.131.10. IPv6 instead supports 128b addresses, and they are
generally written as 8, 4-byte hex values, such as cafe:f00d:d00d:1401:2414:1248:1281:8712.
A single long run of 0 bytes in an IPv6 address can be replaced by two colons, so ::1 is really
0000:0000:0000:0000:0000:0000:0000:0001

IP also cares and routes by “subnets”, groups of addresses with a common prefix indicated
by # as the # of bits. So 128.32/16 is an IPv4 subnet which specifies 216 addresses, and
128.32.131/24 specifies 28 addresses. Routing generally proceeds on a subnet rather than
individual IP basis.

When a client gets its configuration it is told its IP address, the address of the gateway, and
the size of the subnet it is on. To send a packet to another computer on the local network,
identified as having the same prefix, the client needs to directly discover the layer 2 address of
the destination, a process we discuss later. Otherwise, it sends the packet onto the gateway
address whose responsibility is to forward it on further towards the destination.

Past the gateway the packet passes onto the general Internet which is composed of cooperat-
ing ASs (Autonomous Systems), identified by unique ASNs (Autonomous System Numbers).
Within an AS the packet can be routed by any mechanism the AS desires, usually involving
a complicated set of preferences designed to minimize the AS’s own cost. If the receiving
AS owns that network it routes the packet to the final destination, otherwise between ASs
routing is determined by BGP (the Border Gateway Protocol), passing the packet closer to
the final destination.

BGP operates by having each AS advertise which networks it is responsible for to its neigh-
boring ASs. Then each neighbor advertises that they can process packets to that network
and what is the AS path that the packets would follow. The process continues and, if an AS
has a choice between two advertisements it will generally select the shortest path (although
actual BGP path selection is a fair bit more complicated).

The biggest problem with BGP is that it operates on trust, assuming that all ASs are
effectively honest. Thus an AS can lie and say that it is responsible for a network it isn’t,
resulting in all traffic being redirected to the lying AS. There are further enhancements
that allow a lying AS to act as a full man-in-the-middle, routing all traffic for a destination
through the rogue AS.

Overall, IP operates on “best effort”. Packets are delivered whole, but can be delivered in
any order and may be corrupted (although the lower layers and IPv4 both include checksums
or CRC checks designed to detect corrupted packets).

There are some special IP addresses and network blocks. 127.0.0/24 and ::1 are “localhost”,

Notes Spring 2020 6 of 25

used to create ‘network’ connections to your own system. 10/8, 172.16/12, and 192.168/16
are the private IPv4 addresses. They are not routed on the Internet and can instead be used
for internal purposes for NAT (Network Address Translation). Finally, 255.255.255.255 is
the IPv4 broadcast address, sending to all computers within the local network.

Notes Spring 2020 7 of 25

4 Layer 4: TCP, UDP
4.1 TCP
TCP (Transmission Control Protocol) is the workhouse protocol at layer 4. It is a reliable, in-
order, connection based stream protocol. That is, a client first creates a persistent connection
to the server. Once established, the connection is reliable and in order: messages are received
on the other side in the same order they were sent. Finally it provides a stream abstraction;
TCP programs don’t think in terms of packets or datagrams but just “send data” and
“receive data”.

TCP connections themselves are identified by a 5-tuple of (Client IP, Client Port, Server IP,
Server Port, proto=TCP). A server listens for requests, usually on a set of “known ports”.
Examples include port 22 (ssh), port 80 (http), port 443 (https). Ports below 1024 are
“reserved” ports and only a program running as root can listen on those ports, but anyone
can send to those ports. The client tends to use “ephemeral” ports, just the next available
port or even just a random port.

To initiate a connection a client sends a TCP SYN to the server. In sending the connection,
the client chooses a random 32 byte initial sequence number. If the server decides to accept
the request, it sends back a SYN+ACK packet (a packet with both the SYN flag and ACK
flag set), with the acknowledgement set to the client’s sequence + 1 and its own initial
sequence number. The client then finally responds with an ACK, completing the “3-way
handshake” and establishing the connection.

Once a connection is established, each side sends data and the other side acknowledges the
data. If a packet is “dropped” (lost), the message won’t be acknowledged and so the sender
will simply retry sending the data. Of course, it could be the acknowledgement that got
dropped in which case the receiver will ignore the duplicated data but resend the ACK. This
is also an important part of TCP’s “Congestion control”; under standard TCP, when drops
occur, it assumes there is congestion and sends data at a slower rate.

To end a connection, one side sends a FIN, which is acknowledged and tells the other side “I
won’t send any more data, but I will accept more data”. This leaves the TCP connection in
a “half closed” state, where one side stops sending but will receive and acknowledge further
information. When the other side is done, it sends its own FIN as well.

There is also an ability to abort a connection. If a side sends a RST packet with a proper
sequence number, this tells the other side that “I won’t send any more data on this connection
and I won’t accept any more data on this connection”. RSTs are not acknowledged as they
usually mean “something went wrong”, such as a program crashing or abruptly terminating
a connection.

4.1.1 Attack: TCP Spoofing
Let’s think about how a malicious adversary could attack the TCP protocol. First, recall
that we have three threat models to consider:

Notes Spring 2020 8 of 25

Off-path Adversary: The off-path adversary cannot read or modify any messages over the
connection. Therefore, to attack TCP communication between Alice and Bob, an off-path
adversary must know or guess the values of the 4-tuple (Client IP, Client Port, Server IP,
Server Port), as well as the sequence numbers currently being used by Alice and Bob in order
to inject data into the communication.

On-path Adversary: The on-path adversary can read, but not modify messages. Since
this adversary is able to observe the sequence numbers, IPs, and ports being used in the
connection, an on-path adversary can easily inject messages into a TCP connection. As
a concrete example, assume Alice has just sent a packet to Bob with sequence number X,
and Bob responds with a packet of his own with sequence number Y and ACK X + 1. An
on-path adversary Mallory wants to inject data into this TCP connection. While she cannot
stop Alice from responding (because Mallory is not a Man in the Middle), Mallory can race
Alice’s next packet with her own, using sequence number X + 1, ACK Y + 1, and Alice’s
IP and port. Since TCP on its own does not provide integrity, Bob will not be able to
distinguish which message actually came from Alice, and which one came from Mallory.

In-path Adversary: The in-path adversary has all the powers of the on-path adversary
and can additionally modify and block messages sent by either party. As a result, the
same attack as the on-path adversary outlined above applies, and in addition, the in-path
adversary doesn’t have to race the party they are spoofing. A man in the middle can just
block the message from ever arriving to the other party and send their own.

Notice that TCP by itself provides no confidentiality nor integrity guarantees. To prevent
attacks like these, we look to TLS, which uses the cryptography you have learned in the last
unit to provide a secure channel of communication.

4.2 UDP
UDP (user datagram protocol) is the unreliable counterpart to TCP. It is an unreliable
datagram protocol, so applications send and receive discrete messages.

Like TCP, connections are identified by 5-tuple, but unlike TCP, UDP offers no guarantees
about reliability. If a datagram is dropped, there is no attempt in UDP to recover and resend.
Similarly, datagrams can be reordered. It is possible for datagrams to be larger than the
underlying network’s packet size, but this can sometimes introduce problems.

UDP is generally used when latency is a concern, such as for very fast protocols like DNS or
for video games and voice applications where it is better to just miss a request than to stall
everything waiting for a retransmission.

Notes Spring 2020 9 of 25

5 TLS
TLS (Transport Layer Security) is a protocol that provides an end-to-end encrypted
communication channel. (You may sometimes see SSL, which is the old, deprecated version
of TLS.) End-to-end encryption guarantees that even if any one part of the communication
chain is compromised, no one except the sender and receiver is able to read or modify the
data being sent.

The Internet layer corresponding to TLS is not exactly clear. According to the OSI viewpoint,
it would be an application at Layer 7, but in reality, it’s more like Layer 6.5, since many
applications use TLS to create an end-to-end encrypted channel, and then build the actual
application on top of TLS. Examples of applications that use TLS are HTTP, which becomes
HTTPS; SMTP (Simple Mail Transport Protocol) which uses the STARTTLS command to
enable TLS on emails; and VPN (Virtual Private Network) connections, which encrypt the
user’s traffic.

TLS is built on top of TCP so that it can also guarantee messages are delivered reliably
in the proper order. From the application viewpoint, TLS is effectively just like a TCP
connection with additional security guarantees.

5.1 TLS Handshake

Because it’s built on top of TCP, the TLS handshake begins where the TCP handshake
leaves off. The first message, ClientHello, presents a random number RB and a list of
encryption protocols it supports. The client can optionally also send the name of the server
it actually wants to contact.

Notes Spring 2020 10 of 25

The second message, ServerHello, replies with its own random number RS, the selected
encryption protocol, and the server’s certificate, which contains a copy of the server’s public
key signed by a certificate authority (CA).

If the client trusts the CA signing the certificate (e.g. that CA is included in the Chrome
browser’s pinned list of trusted CAs), then the client can use the signature to verify the
server’s public key is correct. If the client doesn’t directly trust the CA, it may need to
verify a chain of certificates in a PKI until it reaches the trusted root of the certificate chain.
Either way, the client now has a trusted copy of the server’s public key.

What is the public key being sent here? Every server implementing TLS must maintain a
public/private key pair in order to support the PS exchange step you’ll see next. We will
assume that only the server knows the private key - if an attacker steals the private key, they
would be able to impersonate the server, and the security guarantees no longer hold.

Sanity check: After the first two messages, can the client be certain that it is talking to the
genuine server and not an impostor?4

The next step in TLS is to generate a random Premaster Secret (PS) known to only the
client and the server. The PS should be generated so that no eavesdropper can determine
the PS based on the data sent over the connection, and no one except the client and the
legitimate server have enough information to derive the PS.

The first way to generate a PS is to use an RSA key exchange, show in the second arrow
here:

4A: No. An attacker can obtain the genuine server’s certificate by starting its own TLS connection with
the genuine server, and then present a copy of that certificate in step 2.

Notes Spring 2020 11 of 25

Here, the client generates the random PS, encrypts it with the server’s public key, and sends
it to the server, which decrypts using its private key.

Sanity check: How can the client be sure it’s using the correct public key?5

We can verify that this method satisfies all the properties of a PS. Because it is encrypted
when sent across the channel, no eavesdropper can decrypt and figure out its value. Also,
only the legitimate server will be able to decrypt the PS (using its secret key), so only the
client and the legitimate server will know the value of the PS.

The second way to generate a PS is to use Diffie-Hellman key exchange, shown in the second
(red) and third (blue) arrows here:

The exchange looks just like classic Diffie-Hellman, except the server signs its half of the
exchange with its secret key. The shared PS is the result of the key exchange, gab mod p.

Again, we can verify that this satisfies the properties of a PS. Diffie-Hellman’s security
properties guarantee that eavesdroppers cannot figure out PS, and no one but the client and
the server know PS. We can be sure that the server is legitimate because the server’s half of
the key exchange is signed with its secret key.

An alternate implementation here is to use Elliptic Curve Diffie-Hellman (ECDHE). The
specifics are out of scope, but it provides the same guarantees as regular DHE using elliptic
curve math.

Generating the PS with DHE and ECDHE has a substantial advantage over RSA key ex-
change, because it provides forward secrecy. Suppose an attacker records lots of RSA-

5A: It was signed by a certificate authority in the previous step.

Notes Spring 2020 12 of 25

based TLS communications, and some time in the future manages to steal the server’s
private key. Now the attacker can decrypt PS values sent in old connections, which violates
the security of those old TLS connections.

On the other hand, if the attacker steals the private key of a server using DHE or ECDHE-
based TLS, they have no way of discovering the PS values of old connections, because the
secrets required to generate the PS (a, b) cannot be discovered using the data sent over the
connection (ga, gb mod p). Starting from TLS 1.3, RSA key exchanges are no longer allowed
for this reason.

Now that both client and server have a shared PS, they will each use the PS and the random
values RB and RS to derive a set of four shared symmetric keys: an encryption key CB and
an integrity key IB for the client, and an encryption key CS and an integrity key IS for the
server.

Up until now, every message has been sent in plaintext over TLS. Sanity check: how might
this be vulnerable?6

In order to ensure no one has tampered with the messages sent in the handshake so far,
the client and server exchange and verify MACs over all messages sent so far. Notice that
the client uses its own integrity key IB to MAC the message, and the server uses its own
integrity key IS. However, both client and server know the value of IB and IS so that they
can verify each other’s MACs.

At the end of a proper TLS handshake, we have several security guarantees. (Sanity check:
where in the handshake did these guarantees come from?)

1. The client is talking to the legitimate server.

2. No one has tampered with the handshake.

3. The client and server share a set of symmetric keys, unique to this connection, that no
one else knows.

Once the handshake is complete, messages are encrypted and MAC’d with the encryption and
integrity keys of the sender before being sent. Because these messages have full confidentiality
and integrity, TLS has achieved end-to-end security between the client and the server.

5.2 Replay attacks
Recall that a replay attack involves an attacker recording old messages and sending them
to the server. Even though the attacker doesn’t know what these messages decrypt to, if
the protocol doesn’t properly defend against replay attacks, the server might accept these
messages as valid and allow the attacker to spoof a connection.

The public values RB and RS at the start of the handshake defend against replay attacks.
To see why, let’s assume that RB = RS = 0 every time and try to execute a replay attack on
RSA-based TLS. Since the attacker is sending the same encrypted PS, and RB and RS are

6A: TCP is insecure against on-path and MITM attackers, who can spoof messages.

Notes Spring 2020 13 of 25

not changing, the server will re-generate the same symmetric keys. Now the attacker can
replay messages from the old TLS connection, which will be accepted by the server because
they have the correct MACs. Using new, randomly generated values RB and RS every time
ensures that each connection results in a different set of symmetric keys, so replay attacks
trying to establish a new connection with the same keys will fail.

What about a replay attack within the same connection? In practice, messages sent over
TLS usually include some counter or timestamp so that an attacker cannot record a TLS
message and send it again within the same connection.

5.3 TLS in practice
The biggest advantage and problem of TLS is the certificate authorities. “Trust does not
scale”, that is, you personally can’t make trust decisions about everyone, but trust can be
delegated, which is how TLS operates. We have delegated to a large number of companies,
the Certificate Authorities, the responsibility of proving that a particular public key can
speak for a particular site. This is what allows the system to work at all. But at the same
time, unless additional measures are taken, this means that all CAs need to be trusted to
speak for every site. This is why Chrome, for example, has a “pinned” CA list, so only some
CAs are allowed to speak for certain websites.

Similarly, newer CAs implement certificate transparency, a mechanism where anyone can
see all the certificates the CA has issued, implemented as a hash chain. Such CAs may issue
a certificate incorrectly, but the impersonated victim can at least know this has happened.
Certificates also expire and can be revoked, where a list of no-longer accepted certificates
is published and regularly downloaded by a web browser or an online-service provides a
mechanism to check if a particular certificate is revoked.

These days TLS is effectively free. The computational overhead is minor to the point of
trivial: an ECDSA signature and ECDHE key exchange for the server, and such signatures
and key exchanges are computationally minor: a single modern processor core can do tens
of thousands of signatures or key exchanges per second. And once the key exchange is
completed the bulk encryption is nearly free as most processors include routines specifically
designed to accelerate AES.

This leaves the biggest cost of TLS in managing the private keys. Previously CAs charged a
substantial amount to issue a certificate, but LetsEncrypt costs nothing because they have
fully automated the process. You run a small program on your web server that generates keys,
sends the public key to LetsEncrypt, and LetsEncrypt instructs that you put a particular
file in a particular location on your server, acting to prove that you control the server. So
LetsEncrypt has reduced the cost in two ways: It makes the TLS certificate monetarily free
and, as important, makes it very easy to generate and use.

Notes Spring 2020 14 of 25

https://letsencrypt.org/

6 DNS
The Internet is commonly indexed in two different ways. Humans refer to websites using
human-readable names such as http://google.com and http://eecs.berkeley.edu, while
computers refer to websites using IP addresses such as 172.217.4.174 and 23.195.69.108.
DNS, or the Domain Name System, is the protocol that translates between the two.

6.1 DNS Message Format
Since every website lookup must start with a DNS query, DNS is designed to be very
lightweight and fast - it uses UDP and has a fairly simple message format.

The first field is a 16 bit identification field that is randomly selected per query and used
to match requests to responses. When a DNS query is sent, the ID field is filled with random
bits. Since UDP is stateless, the DNS response must send back the same bits in the ID field
so that the original query sender knows which DNS query the response corresponds to.

Sanity check: Which type(s) of adversary can read this ID field? Which type(s) cannot read
the ID field and must guess it when attacking DNS?7

The next 16 bits are reserved for flags, which specify whether the message is a query or a
response, as well as whether the query was successful (NOERROR for success, NXDOMAIN if the
query asks about a non-existent name).

The next field specifies the number of questions asked (always 1 in practice). The three
fields after that are used in response messages and specify the number of resource records
(RRs) contained in the message. We’ll describe each of these categories of RRs in depth
later.

The rest of the message contains the actual content of the DNS query/response. This content
is always structured as a set of RRs, where each RR is a key-value pair with an associated
type.

For completeness, a DNS record key contains <Name, Class, Type>, where Name is the
actual key, Class is IN for Internet (except for special queries used to get information about
DNS itself), and Type specifies the record type. A DNS record value contains <TTL, Value>,
where TTL is the time-to-live (how long, in seconds, the record can be cached), and Value is
the actual value.

6.2 DNS Servers
In practice, your local computer usually delegates the task of DNS lookups to a DNS
Recursive Resolver, which sends the queries, processes the responses, and maintains an
internal cache of records. When performing a lookup, the DNS Stub Resolver on your
computer sends a query to the recursive resolver, lets it do all the work, and receives the

7A: MITM and on-path can read the ID field. Off-path must guess the ID field.

Notes Spring 2020 15 of 25

response. The recursive resolver is usually provided by your ISP and/or configured into your
network connection by DHCP.

The DNS Authority Servers or name servers are servers on the Internet responsible for
answering DNS queries. There is a special set of authority servers, the root servers, that
are publicly known - you can see them for yourself here.

When we step through the process of a DNS lookup, we will be looking at messages sent
between the recursive resolver and various authority servers.

6.3 DNS Lookup
If the Internet were small enough, we could let each of the root servers answer every DNS
query directly, but with the current size of the Internet, this is clearly infeasible. Instead,
DNS takes inspiration from search trees and answers queries recursively. You can think of
the DNS name servers as being connected in a tree structure:

Every DNS query starts by asking one of the root servers: “Where is eecs.berkeley.edu?”
Instead of answering directly, the root server will reply by redirecting you to the appropriate
name server: “I don’t know, but you can ask the .edu name server.”

Since you don’t have an answer yet, your next step is to ask the .edu name server: “Where
is eecs.berkeley.edu?” The reply will take you one level further down the tree: “I don’t
know, but you can ask the berkeley.edu name server.”

You still don’t have an answer, so you ask the berkeley.edu name server: “Where is
eecs.berkeley.edu?” Because you have reached the bottom of the tree, the berkeley.edu

name server will respond: “eecs.berkeley.edu is located at 23.195.69.108,” completing
the recursive DNS query.

There is one slight problem with this lookup process. DNS name servers, like websites, have
names and IP addresses associated with them. When you receive a reply like “I don’t know,
but you can ask the .edu name server,” you’d have to make another DNS query to figure
out the IP address corresponding to the .edu name server. To avoid this circular problem,

Notes Spring 2020 16 of 25

https://www.iana.org/domains/root/servers

if a name server intends to redirect you to another name server, the reply must also tell you
where that name server is located, e.g. “I don’t know, but you can ask the .edu name server,
located at 192.5.6.30.”

Now let’s see a real DNS query in action. You can try this at home with the dig utility -
remember to set the +norecurse flag so you can unravel the recursion yourself.

Again, every DNS query begins with the root server. We can look up the IP addresses of
the root servers, although in a real recursive resolver these addresses are usually hardcoded.

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114

;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:

;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:

edu. 172800 IN NS a.edu-servers.net.

edu. 172800 IN NS b.edu-servers.net.

edu. 172800 IN NS c.edu-servers.net.

...

;; ADDITIONAL SECTION:

a.edu-servers.net. 172800 IN A 192.5.6.30

b.edu-servers.net. 172800 IN A 192.33.14.30

c.edu-servers.net. 172800 IN A 192.26.92.30

...

In the first section of the answer, we can see the header information, including the ID field
(26114), the return status (NOERROR), and the number of records returned.

The question section contains 1 record (you can verify by seeing QUERY: 1 in the header).
It has key eecs.berkeley.edu, type A, and a blank value. This is exactly what we queried
for.

The answer section is blank (ANSWER: 0 in the header), because the root server didn’t
provide a direct answer to our query.

The authority section contains 13 records. The first one has key .edu, type NS, and
value a.edu-servers.net. This is the root server telling us “I don’t know, but you can ask
a.edu-servers.net, which is an .edu name server.” Each record in this section corresponds
to a potential name server we could ask next.

The additional section contains 27 records. The first one has key a.edu-servers.net,
type A, and value 192.5.6.30. This is the part of the response that tells us where to find

Notes Spring 2020 17 of 25

https://en.wikipedia.org/wiki/Dig_(command)
https://www.iana.org/domains/root/servers

the next name server to ask.

We saw two record types in this response: A type records map names to IP addresses, and
NS type records map a DNS zone to a name server.

For completeness: the 172800 is the TTL (time-to-live) for each record, set at 48 hours here.
The IN is the Internet class and can basically be ignored. Sometimes you will see records
of type AAAA, which correspond to IPv6 addresses (the usual A type records correspond to
IPv4 addresses).

Sanity check: What name server do we query next? How do we know where that name
server is located? What do we query that name server for?8

$ dig +norecurse eecs.berkeley.edu @192.5.6.30

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36257

;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 5

;; QUESTION SECTION:

;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:

berkeley.edu. 172800 IN NS adns1.berkeley.edu.

berkeley.edu. 172800 IN NS adns2.berkeley.edu.

berkeley.edu. 172800 IN NS adns3.berkeley.edu.

;; ADDITIONAL SECTION:

adns1.berkeley.edu. 172800 IN A 128.32.136.3

adns2.berkeley.edu. 172800 IN A 128.32.136.14

adns3.berkeley.edu. 172800 IN A 192.107.102.142

...

The next query also has an empty answer section, with NS records in the authority section
pointing us to berkeley.edu name servers, and A records in the additional section telling
us where those name servers can be found.

$ dig +norecurse eecs.berkeley.edu @128.32.136.3

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788

;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:

;eecs.berkeley.edu. IN A

8Query a.edu-servers.net, whose location we know because of the records in the additional section.
Query for eecs.berkeley.edu just like before.

Notes Spring 2020 18 of 25

https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/IPv4

;; ANSWER SECTION:

eecs.berkeley.edu. 86400 IN A 23.185.0.1

Finally, the last query gives us the IP address corresponding to eecs.berkeley.edu in the
form of a single A type record in the answer section.

In practice, because the recursive resolver caches as many answers as possible, most queries
can skip the first few steps and used cached records instead of asking root servers and high-
level name servers like .edu every time.

Notes Spring 2020 19 of 25

7 DNS Security
7.1 Bailiwick
DNS is insecure against a malicious name server. For example, if a berkeley.edu name
server was taken over by an attacker, it could send answer records that point to malicious
IP addresses. However, a more dangerous exploit is using the additional section to poison
the cache with even more malicious IP addresses. For example, this malicious DNS response
would cause the resolver to associate google.com with an attacker-owned IP address.

$ dig +norecurse eecs.berkeley.edu @192.5.6.30

...

;; ADDITIONAL SECTION:

adns1.berkeley.edu. 172800 IN A 128.32.136.3

www.google.com 999999 IN A 6.6.6.6

...

To prevent any malicious name server from doing too much damage, resolvers use baili-
wick checking, which only allows a name server to provide records under its domain.
This means that the berkeley.edu name server can only provide records for berkeley.edu
(not stanford.edu), the .edu name server can only provide records for .edu domains (not
google.com), and the root name servers can provide records for anything.

7.2 On-path attackers
Against an on-path attacker, DNS is completely insecure - everything is sent over plaintext,
so an attacker simply needs to fill in the correct ID field and add malicious records and race
to send the fake reply before the legitimate response. If the TTL is set to be very high, the
victim will now associate those websites with attacker-controlled IP addresses for a very long
time.

For both on-path and off-path attackers, if the legitimate response arrives before the fake
response, it is cached, which limits the attacker to only a few tries per week. Since off-path
attackers must guess the ID field with a 1/216 probability of success, DNS was believed to be
secure against off-path attackers until Dan Kaminsky discovered a flaw in the DNS protocol
in 2008. This attack was so severe that Kaminsky was awarded with a Wikipedia article.

7.3 Kaminsky attack
The Kaminsky attack relies on querying for nonexistent domains. Remember that the legit-
imate response for a nonexistent domain is an NXDOMAIN status with no other records, which
means that nothing is cached! This allows the attacker to repeatedly race until they win,
without having to wait for cached records to expire.

Notes Spring 2020 20 of 25

https://en.wikipedia.org/wiki/Dan_Kaminsky

An attacker can now include malicious additional records in the fake response for the nonex-
istent cs161.berkeley.edu:

$ dig cs161.berkeley.edu

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29439

;; flags: qr aa; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:

;cs161.berkeley.edu. IN A

;; ADDITIONAL SECTION:

berkeley.edu. 999999 IN A 6.6.6.6

If the fake response arrives first, the resolver will cache the malicious additional record.
Notice that this doesn’t violate bailiwick checking, since the name server responsible for
answering cs161.berkeley.edu can provide a record for berkeley.edu.

Now that the attacker can try as many times as they want, all that’s left is to force a victim
to make thousands of DNS queries for nonexistent domains. This can be achieved by tricking
the victim into visiting a website that tries to load lots of nonexistent domains:

...

The Kaminsky attack allows on-path attackers to race until their fake response arrives first
and off-path attackers to additionally brute-force the ID field. There is no way to completely
eliminate the Kaminsky attack in regular DNS, although modern DNS protocols add UDP
source port randomization to make it much harder. (DNS doesn’t specify what port the
resolver uses to send queries, so source port randomization uses a random 16-bit source port
for each query.) This decreases an off-path attacker’s probability of success to 1/232, which
is harder but certainly not impossible.

Sanity check: How much extra security does source port randomization provide against
on-path attackers?9

9A: None, on-path attackers can see the source port value.

Notes Spring 2020 21 of 25

8 DNSSEC
DNSSEC is an extension to regular DNS that provides integrity and authentication on
all DNS messages sent. Sanity check: Why do we not care about the confidentiality of
DNSSEC?10

DNSSEC is designed as a public key infrastructure (PKI), which creates a chain of trust
as you work your way down the DNS tree.

A chain of trust must start somewhere, so we assume that the root servers are trusted. Now,
when a name server points us to one of its children, it must also endorse anything signed by
that child. A simplified DNSSEC conversation:

1. Resolver to root server:

“Where is eecs.berkeley.edu?”

2. Root server to resolver:

“I don’t know, try asking the .edu name server at 192.5.6.30. I hereby endorse any
message signed by the .edu name server. Signed, root.”

3. Resolver to .edu name server:

“Where is eecs.berkeley.edu?”

4. .edu name server to resolver:

“I don’t know, try asking the berkeley.edu name server at 128.32.136.3. I hereby
endorse any message signed by the berkeley.edu name server. Signed, .edu name
server.”

5. Resolver to berkeley.edu name server:

“Where is eecs.berkeley.edu?”

6. berkeley.edu name server to resolver:

“eecs.berkeley.edu is located at 23.195.69.108. Signed, berkeley.edu name server.”

How can we verify that the IP address provided in step 6 is correct? I know that the
message in step 6 is signed by berkeley.edu, and in step 4, .edu endorsed anything signed
by berkeley.edu. Thus .edu is endorsing the message in step 6.

How can I trust .edu’s endorsement in step 4? I know that the message in step 4 is signed by
.edu, and in step 2, root endorsed anything signed by .edu. Thus root is endorsing .edu’s
endorsement of the message in step 6. And since I trust root, I now trust the IP address in
step 6.

What happens if an attacker tries to forge step 6? The attacker won’t have berkeley.edu’s
private signing key, so they have no way of creating a message that will be trusted by the

10A: DNS responses don’t contain sensitive data. Anyone could query the name servers for the same
information.

Notes Spring 2020 22 of 25

resolver. In fact, because every step is signed, as long as the attacker hasn’t stolen any secret
keys, they have no way of forging any message in the DNSSEC conversation.

To formalize the concepts of signatures and endorsements, we use digital signatures from
the public-key cryptography unit. Signing works how you’d expect - for example, in step 2,
“Signed, root” is actually a digital signature on the entire message using root’s secret signing
key.

How do we endorse messages signed by someone else? Remember that we use a public key
to verify signatures, so if Alice wants to endorse Bob, Alice will sign Bob’s public verification
key using Alice’s secret signing key. We can use Bob’s public key to verify that the message
was properly signed by Bob, and because Alice signed Bob’s public key, we know that Alice
is endorsing Bob.

8.1 DNSSEC query walkthrough
Now we’re ready to see a full DNSSEC query in action.

$ dig +norecurse +dnssec eecs.berkeley.edu @198.41.0.4

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5232

;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 15, ADDITIONAL: 27

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;; QUESTION SECTION:

;eecs.berkeley.edu. IN NS

;; AUTHORITY SECTION:

edu. 172800 IN NS a.edu-servers.net.

edu. 172800 IN NS b.edu-servers.net.

edu. 172800 IN NS c.edu-servers.net.

...

edu. 86400 IN DS {cryptogoop}

edu. 86400 IN RRSIG DS {cryptogoop}

;; ADDITIONAL SECTION:

a.edu-servers.net. 172800 IN A 192.5.6.30

b.edu-servers.net. 172800 IN A 192.33.14.30

c.edu-servers.net. 172800 IN A 192.26.92.30

...

You might have noticed in the previous section, there was always one extra additional record
that didn’t show up in the additional section. This record corresponds to the OPT pseudo-
section. This section allows extra space for DNSSEC-specific flags (e.g. the DO flag requests

Notes Spring 2020 23 of 25

DNSSEC information), but in order to be backwards-compatible with regular DNS, the
section is encoded as an additional record when sent in the request and the reply.

The question, answer (blank), authority, and additional sections all contain the same records
from regular DNS. The only difference is the extra two records in the authority section. The
first of these is of type DS (Delegated Signer) and encodes the public key of the next name
server we will talk to, in this case the .edu name server. The second of these is of type
RRSIG and contains the signature of the public key in the DS record (notice the type DS in
the value section of the record).

Sanity check: Whose secret signing key is used to generate the signature in the RRSIG

record?11

The next query to the .edu name server is also identical to the original DNS query, with the
addition of a DS record containing the berkeley.edu name server’s public key, and a RRSIG

record signing the DS record using the .edu name server’s secret signing key.

The final query to the berkeley.edu name server will give us the A type answer record
as before, along with an RRSIG type record signing the A type answer record using the
berkeley.edu name server’s secret signing key.

8.2 Nonexistent domains
DNSSEC works fine for existing domains, but encounters a problem if we want to sign
nonexistent records. Remember that DNS is designed to be fast, so name servers can’t afford
to sign a message proving the domain is nonexistent on-demand. Also, online cryptography
makes name servers vulnerable to an attack. Sanity check: what’s the attack?12

Instead of signing individual nonexistent domains, name servers pre-compute signatures on
ranges of nonexistent domains. Suppose we have a website with three subdomains:

b.example.com

l.example.com

q.example.com

If we sort every possible subdomain alphabetically, there are three ranges of nonexistent
domains: everything between b and l, l and q, and q and b (wrapping around from z to a).

Now, if someone queries for c.example.com, instead of signing a message proving the nonex-
istence of that specific domain, the name server returns a NSEC record saying, “No do-
mains exist between b.example.com and l.example.com. Signed, name server.”

NSEC records have a slight vulnerability - notice that every time we query for a nonexistent
domain, we can discover two valid domains that we might have otherwise not known. By

11The DNS response is from root, so the RRSIG is signed with root’s secret signing key.
12A: Denial of service (DoS). Flood the name server with requests for nonexistent domains, and it will be

forced to sign all of them.

Notes Spring 2020 24 of 25

traversing the alphabet, an attacker can now learn the names of every subdomain of the
website:

1. Query c.example.com. Receive NSEC saying nothing exists between b and l. Attacker
now knows b and l exist.

2. Query m.example.com. Receive NSEC saying nothing exists between l and q. Attacker
now knows q exists.

3. Query r.example.com. Receive NSEC saying nothing exists between q and b. Attacker
has already seen b, so they know they have walked the entire alphabet successfully.

Some argue that this is not really a vulnerability, because hiding a domain name like
admin.example.com is relying on security through obscurity. Nevertheless, an attempt to
fix this was implemented as NSEC3, which simply uses the hashes of every domain name
instead of the actual domain name.

372fbe338b9f3bb6f857352bc4c6a49721d6066f (l.example.com)

6898bc7daf3054daae05e8763153ee1506e809d5 (q.example.com)

f96a6ec2fb6efbe43002f4cbf124f90879424d79 (b.example.com)

The order of the domain names has changed, but the process is the same - if someone queries
for c.example.com, which hashes to 8dca64e4b6e1724f0d84c5c25c9354d5529ab0a2, the
NSEC3 record will say, “No domains exist that hash to values between 6898b... and
f96a6.... Signed, name server.”

Of course, an attacker could buy a GPU and precompute hashes to learn domain names
anyway. . .and NSEC5 was born. Fortunately, it’s still out of scope.

Notes Spring 2020 25 of 25

https://datatracker.ietf.org/doc/draft-vcelak-nsec5/

	Intro to Internet
	Internet layering
	Dumb network
	Network Adversaries

	Lower Layers: ARP, DHCP
	Networking background: LANs, Ethernet
	ARP
	Protocol
	Attack: ARP Spoofing
	Defenses: Switches

	DHCP
	Protocol
	Attack
	Defenses

	Layer 3: IP
	Layer 4: TCP, UDP
	TCP
	Attack: TCP Spoofing

	UDP

	TLS
	TLS Handshake
	Replay attacks
	TLS in practice

	DNS
	DNS Message Format
	DNS Servers
	DNS Lookup

	DNS Security
	Bailiwick
	On-path attackers
	Kaminsky attack

	DNSSEC
	DNSSEC query walkthrough
	Nonexistent domains

