Symmetric-key encryption scheme.

Syntax:

\[\text{KeyGen()} \rightarrow K \]
\[\text{Enc}(K, M) \rightarrow C \]
\[\text{Dec}(K, C) \rightarrow M \]

Correctness: \(\forall K, \forall M, C = \text{Enc}(K, M) : \text{Dec}(K, C) = M \)

Security: \(\text{Adv} \) sees all the algorithms: KeyGen, Enc, Dec

[does not see the randomness used by KeyGen and]

\(K \)

Insufficient def: No \(\text{Adv} \) can reconstruct \(M \) from a ciphered \(C \)

Broken/Insecure scheme: \(\text{Adv} \) can tell first letter of \(M \), but nothing else
Goal: no partial information about M may leak because Adv can couple it with side information about M & reconstruct M.

No Adv should be able to distinguish two messages based on their chosen plaintext attack.

Security game: IND-CPA

Indistinguishability

Challenger

$\text{Enc}(\cdot)$ will be IND-CA

Adv

$\text{Enc}(K,M) = 2 \cdot M \times \text{Exp}_{\text{CA}}$

Random

$\text{Enc}(K,M) = \text{random number}$

Correctness

$\text{Enc}(K,M) \cdot K + H \mod p$

$\times \text{IND-CPA}$

$\text{Enc}(K,M) = 3$

$\times \text{Correctness}$

VIND-CPA

If Adv,

$\Pr[\text{Adv wins } (b \cdot = b)] = \frac{1}{2} + \text{negl}(\frac{1}{2^n})$ atoms in the universe
For an IND-CPA+ correct scheme, we need

1. One-time pad
2. Block cipher

\[\text{Alice} \]
\[n \rightarrow \text{key size, message size} \]
\[\text{keyGen():} \]
\[K = k_1 \ldots k_n \quad \leftarrow \text{chosen randomly} \]
\[M = M_1 \ldots M_n \]
\[\text{Enc}(K, M) = K \oplus M \quad (bitwise) \]
\[K = 01 \quad M = 11 \quad \rightarrow C = 01 \oplus 11 = 10 \]

\[\text{Bob} \]
\[K = k_1 \ldots k_n \]
\[\text{Dec}(k, C) = k \oplus C \]

Correctness:
\[\text{Dec}(K, C) = K \oplus C = K \oplus K \oplus M = M \]

| Is it IND-CPA? | NOT IND-CPA |

If you use it only \(\text{once} \), it is secure.

\(\text{Claim: Given an ciphertext } C, (K \neq M), \frac{\text{Pr}[\text{Adv}(C) = M]}{\text{Pr}[\text{Adv}(C, M_0, M_1) = M_0]} \leq \text{negl}; \text{Pr}[\text{Adv}(C, M_0, M_1) = M_0] \approx \frac{1}{2} \)
\[K \$
\]
\[C = M_0 \oplus (M_0 \oplus C) \]
\[C = M_1 \oplus (M_1 \oplus C) \]
\[K \$
\]

Each is equally likely.

\[\square \text{ use one-time pad only once (encrypt only one message per key)} \]