
Weaver
Spring 2021

CS 161
Computer Security Midterm

For questions with circular bubbles, you may select exactly one choice on Gradescope.

Unselected option

Only one selected option

For questions with square checkboxes, you may select one or more choices on Gradescope.

You can select

multiple squares

For questions with a large box, you need to write your answer in the text box on Gradescope.

There is an appendix at the end of this exam, containing descriptions of all C functions used on this exam.

You have 110 minutes, plus a 10-minute bu�er for distractions or technical di�culties, for a total of 120
minutes. There are 7 questions of varying credit (150 points total).

The Gradescope answer sheet assignment has a time limit of 120 minutes. Do not click "Start Assignment"
until you’re ready to start the exam. The password to decrypt the PDF is at the top of the answer sheet.

The exam is open note. You can use an unlimited number of handwritten cheat sheets, but you must work
alone.

Clari�cations will be posted at https://cs161.org/clari�cations.

Q1 MANDATORY – Honor Code (5 points)
Read the following honor code and type your name on Gradescope.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am
aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct
will be reported to the Center for Student Conduct and may further result in, at minimum, negative
points on the exam and a corresponding notch on Nick’s Stanley Fubar demolition tool.

Solution: Everyone gets 5 free points for embracing the suck this semester.

We won’t take any points o� if you entered something for a subpart that doesn’t exist, or if you �lled
in a text box on a multiple-choice question, or vice-versa. To be consistent, we will not consider
any unnecessary writing/bubbling on your exam during grading (pretend it’s scratch work).

This is the end of Q1. Leave the remaining subparts of Q1 blank on Gradescope,
if there are any. Proceed to Q2 on your answer sheet.

Page 1 of 28

https://cs161.org/clarifications

Grade distribution (out of 150 points):

Midterm Page 2 of 28 CS 161 – Spring 2021

Q2 True/false (40 points)
Each true/false is worth 2 points.

Q2.1 True or False: A bank vault is protected by a locked door, but thieves break into the vault by
entering the apartment upstairs and drilling a hole through the ceiling. This is an example of least
privilege.

True False

Solution: False. The thieves were never given any unnecessary privileges by the bank. This
is an example of failing to ensure complete mediation (or a system being as safe as its weakest
link). The bank failed to check an alternate way to access the bank vault.

Fun fact: This is the plot of the �lm Ri��, which was banned in several countries because it
inspired many copycats to try out the same heist.

Q2.2 True or False: Time-of-check to time-of-use (TOCTTOU) vulnerabilities can be present in
memory-safe programming languages such as Python.

True False

Solution: True. This vulnerability is not speci�c to bu�er over�ows; it’s an overarching
concept that can appear across many di�erent programs and platforms.

Q2.3 True or False: In general, we want our trusted computing base (TCB) to be as large as possible,
in order to ensure that all components of a software system are trusted components.

True False

Solution: False. Keeping the TCB small makes it simpler to ensure that all of your TCB is
trusted.

Q2.4 True or False: A program with ASLR, stack canaries, and WˆX (also known as non-executable
pages, DEP, or the NX bit) enabled is still vulnerable to integer conversion vulnerabilities.

True False

Solution: True. Integer conversion vulnerabilities don’t necessarily have to be related to stack
smashing. Consider the authentication bit example from lecture/notes, where we over�ow a
local variable bu�er to overwrite an authentication variable directly above the bu�er. This
could have an integer conversion vulnerability, even when ASLR, stack canaries, and WˆX are
all enabled.

Q2.5 True or False: Format string vulnerabilities let us read values from memory, but not write to
memory.

Midterm Page 3 of 28 CS 161 – Spring 2021

True False

Solution: False. The %n format string type lets the attacker write values to memory.

Q2.6 Consider the following vulnerable function:
1 void v u l n e r a b l e () {
2 char buf [3 2] ;
3 g e t s (buf) ;
4 p r i n t f (buf) ;
5 }

True or False: Replacing gets(buf) with fgets(buf, 32, stdin) makes this function
memory-safe.

True False

Solution: False. This program has two vulnerabilities - the gets is the �rst one, and the
printf of a user-inputted string is the second. We should change the printf to printf("%s",
buf); to avoid string format vulnerabilities.

Q2.7 True or False: When W^X (also known as non-executable pages, DEP, or the NX bit) is enabled,
memory on the heap can be interpreted as code and executed.

True False

Solution: False. W^X says memory can be writable or executable, but not both. Memory on
the heap must be writable, so by de�nition it cannot be executable.

Q2.8 True or False: When ASLR is enabled, it is possible to redirect to shellcode that is located on
the stack.

True False

Solution: True. Techniques like return-oriented programming, guessing addresses, leaking
addresses, and ret2esp (from Project 1) are designed to subvert ASLR and execute shellcode on
the stack.

Q2.9 True or False: Pointer authentication is a commonly-used defense on 32-bit systems.

True False

Solution: False. Pointer authentication is only used on 64-bit systems (e.g. the latest ARM
processors), where addresses are 64 bits long and contain many unused bits. 32-bit systems
usually use all 32 bits for addresses, so pointer authentication is impractical.

Midterm Page 4 of 28 CS 161 – Spring 2021

Q2.10 True or False: One-time pad encryption and decryption can both be parallelized.

True False

Solution: True. When encrypting or decrypting, each bit is XORed with the corresponding
bit in the key independently, with no dependence on any other bits.

Q2.11 True or False: If the secret key is randomly generated for each encryption, then even if nonces
are reused, AES-CTR mode is still IND-CPA secure.

True False

Solution: True. In AES-CTR mode, the nonce is fed into the block cipher along with the
secret key to obtain a sort of one time pad for the encryption. If the key changes each time,
the adversary won’t be able to predict the output of the block cipher, even if the nonces are
the same each time.

Q2.12 True or False: While using AES-CBC mode, an IV associated with a ciphertext should never be
revealed to an eavesdropper at any time.

True False

Solution: False. The IV needs to be published with the ciphertext so that the recipient can
properly decrypt.

However, note that IVs for future messages can’t be published, because that would allow the
attacker to “cancel out” the IV in future encryptions to win the IND-CPA game. (See the
symmetric-key crypto discussion for more details.)

Q2.13 True or False: While using AES-CTR mode, nonces associated with future ciphertexts can be
published ahead of time without breaking security.

True False

Solution: True. It’s okay for AES-CTR nonces to be published ahead of time because in CTR
mode, the nonce is always passed through block cipher encryption. Even if the nonce is known,
the block cipher outputs an unpredictable value that the attacker can’t guess without knowing
the secret key.

Q2.14 True or False: A pseudorandom generator can be used to stretch an initial seed with k bits of
entropy to a longer output with 2k bits of entropy.

True False

Midterm Page 5 of 28 CS 161 – Spring 2021

Solution: No deterministic function can increase the entropy of any source. A pseudorandom
generator can generate 2k pseudorandom bits from k truly random bits, but the pseudorandom
bits still only have k bits of entropy.

Q2.15 True or False: Suppose p is a prime and g is a generator (just like in Di�e-Hellman). Given ga

(mod p), an attacker with unlimited computational resources cannot recover a.

True False

Solution: False. The attacker could try every a between 0 and p, compute ga (mod p), and
see if it matches. However, this is considered computationally impractical if p is large enough.

Q2.16 True or False: In practice, El Gamal encryption is usually used to encrypt random session keys,
not meaningful messages.

True False

Solution: True. Public-key cryptography is slow, so it is much faster to send an encrypted
symmetric key and then use symmetric-key encryption for the actual messages. Also, the El
Gamal protocol shown in lecture is not IND-CPA secure, which leads to potential information
leakage if you use it to send meaningful messages.

Q2.17 True or False: Password hashing algorithms should use slower hashes.

True False

Solution: True. Using a slow hash increases the di�culty of a dictionary attack by a signi�cant
constant time factor.

Q2.18 True or False: To solve a Bitcoin proof-of-work problem, a miner has to �nd a value whose
hash begins with many zeros.

True False

Solution: True. Hashes are e�ectively random, so the miner has to try 2n hashes to �nd a
value whose hash begins with n zeros. This proves that the miner performed approximately
2n hashes of work.

Q2.19 True or False: If you browse the Internet through Tor, all your communications are guaranteed
to be anonymous (no adversary can see who you’re communicating with).

True False

Midterm Page 6 of 28 CS 161 – Spring 2021

Solution: False. A global adversary who can see the entire network (e.g. the NSA) can analyze
network tra�c and deduce who you’re communicating with.

Q2.20 True or False: The fastest computers today are capable of brute-forcing a 128-bit key in about
20 years.

True False

Solution: False. In lecture, Nick’s calculations show it would take 30 trillion years.

This is the end of Q2. Leave the remaining subparts of Q2 blank on Gradescope,
if there are any. Proceed to Q3 on your answer sheet.

Midterm Page 7 of 28 CS 161 – Spring 2021

Q3 Copy Bu�ers (19 points)
Consider the following vulnerable C code:

1 void c o p y _ b u f f e r s (char ∗ ds t , char ∗ s r c , s i z e _ t num) {
2 s t r n c p y (ds t , s r c , num) ;
3 }
4
5 in t main () {
6 in t s i z e _ b y t e s ;
7 s t ruc t {
8 char x [6 4] ;
9 char y [8] ;

10 } m y_ s t r u c t ;
11 char t h e _ b u f f e r [6 4] ;
12 s i z e _ b y t e s = s i z eo f (t h e _ b u f f e r) ;
13
14 p r i n t f (" What would you l i k e t o w r i t e i n t o t h e _ b u f f e r ? \ n ") ;
15 f g e t s (t h e _ b u f f e r , s i z e _ b y t e s , s t d i n) ;
16
17 c o p y _ b u f f e r s (m y _s t r u c t . y , t h e _ b u f f e r , s i z e _ b y t e s) ;
18
19 return 0 ;
20 }

De�nitions of relevant C functions may be found on the last page of this exam.

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or saved
registers in all questions.

For this question, assume that no memory safety defenses are enabled.

Assume that you have set a breakpoint at line 2 in the program and stopped just before the call to
strncpy. Fill in the numbered blanks corresponding to the following entries in the stack diagram. Each
blank represents a variable or struct member and may represent more than one word. Higher-numbered
addresses are located at the top of the diagram.

Stack
RIP of main
SFP of main

(1a)
(1b)
(1c)
(1d)
(2a)
(2b)
(2c)

RIP of copy_buffers
SFP of copy_buffers

Q3.1 (3 points) Section 1:

Midterm Page 8 of 28 CS 161 – Spring 2021

(A) (1a) = size_bytes; (1b) = my_struct.y; (1c) = my_struct.x; (1d) = the_buffer

(B) (1a) = size_bytes; (1b) = my_struct.x; (1c) = my_struct.y; (1d) = the_buffer

(C) (1a) = the_buffer; (1b) = my_struct.y; (1c) = my_struct.x; (1d) = size_bytes

(D) (1a) = the_buffer; (1b) = my_struct.x; (1c) = my_struct.y; (1d) = size_bytes

(E) (1a) = my_struct.y; (1b) = my_struct.x; (1c) = the_buffer; (1d) = size_bytes

(F) (1a) = my_struct.x; (1b) = my_struct.y; (1c) = the_buffer; (1d) = size_bytes

Q3.2 (3 points) Section 2:

(G) (2a) = num; (2b) = dst; (2c) = src

(H) (2a) = src; (2b) = dst; (2c) = num

(I) (2a) = num; (2b) = src; (2c) = dst

(J) (2a) = dst; (2b) = src; (2c) = num

(K)

(L)

Solution: Recall that:

1. Arguments get pushed on the stack in reverse order; and

2. Local variables get pushed on the stack in the order they are declared; and

3. Within a struct, the �rst variable declared is at the lowest address.

Stack
RIP of main
SFP of main

[local var] int size_bytes
[local var] my_struct.y[8]
[local var] my_struct.x[64]
[local var] char buf[64]

[arg] size_t num
[arg] char* src
[arg] char* dst

RIP of copy_buffers
SFP of copy_buffers

Using GDB, you �nd that the address of the RIP of main is 0xfff7bf20. Construct an input that would
cause the vulnerable program to execute shellcode when provided to the program.

Midterm Page 9 of 28 CS 161 – Spring 2021

Q3.3 (5 points) The �rst part of your input should be some number of garbage bytes. How many bytes
of garbage do you need? Your answer should be an integer. Enter your answer in the text box on
Gradescope.

(A) (B) (C) (D) (E) (F)

Solution: The vulnerability here is at line 2. We are calling strncpywithdst = my_struct.y,
src = the_buffer, and num = size_bytes = 64. This means we are copying up to 64
bytes from the_buffer to my_struct.y, even though my_struct.y is only 8 bytes.

The input to the program happens at the fgets call at line 15. At most 63 bytes of input will
get read into the_buffer, because fgets adds a null byte.

The stack diagram above shows that my_struct.y is 16 bytes below the rip of main. We want
to overwrite everything in between my_struct.y and the rip of main. Therefore, we need 16
garbage bytes.

Q3.4 (5 points) The remainder of your input should be a series of bytes. What should these bytes be?
You may use the variable SHELLCODE as 30-byte shellcode byte sequence. Your answer should be an
expression in Python 2 syntax (just like Project 1). Enter your answer in the text box on Gradescope.

(G) (H) (I) (J) (K) (L)

Solution: From the question, we know that the address of the rip of main is 0xfff7bf20.
We have already written 16 bytes of garbage to reach the rip, so the next thing we write will
overwrite the rip. We should overwrite the rip with the address of our shellcode.

The simplest solution is to put the shellcode 4 bytes above rip and then overwrite the rip with
the address 4 bytes above rip. In this solution, the address of shellcode is 0xfff7bf20+ 4 =
\x24\xbf\xf7\xff, so the input would be:

'\x24\xbf\xf7\xff' + SHELLCODE

Other solutions are possible.

Q3.5 (3 points) Which of the following defenses would individually stop your exploit from the previous
parts? Select all that apply.

(A) Stack canaries

(B) Non-executable pages (also called DEP, W^X, and the NX bit)

(C) ASLR

(D) None of the above

(E)

Midterm Page 10 of 28 CS 161 – Spring 2021

(F)

Solution: Stack canaries defend against the exploit, because when overwriting everything
between local variable my_struct.y and the rip of main will overwrite the canary.

W^X defends against the exploit, because the shellcode on the stack would not be executable.

ASLR defends against the exploit, because the address of the rip of main would change each
time.

This is the end of Q3. Leave the remaining subparts of Q3 blank on Gradescope,
if there are any. Proceed to Q4 on your answer sheet.

Midterm Page 11 of 28 CS 161 – Spring 2021

Q4 IV League (15 points)
In this question, E denotes AES block cipher encryption.

Q4.1 (3 points) Recall that AES-ECB is not IND-CPA secure because it is deterministic. What if we tried
to introduce randomness to AES-ECB? Consider a new scheme AES-ECB-IV whose construction
is as follows:

AES-ECB-IV(K,M) = IV ‖C1‖ · · · ‖Cn

Ci = E(K,Mi)⊕ IV

M0

AES EncryptionK

IV

C0

M1

AES EncryptionK

IV

C1

M2

AES EncryptionK

IV

C2

Note that IV is the same for every block when encrypting a message. Assume IV is randomly
generated for each encrypted message. Is AES-ECB-IV IND-CPA secure?

(A) Yes, it is secure even if the attacker can predict future IVs, because it is no longer deterministic.

(B) Yes, but only if the attacker is unable to predict future IVs.

(C) No, because an attacker can still detect when the same block is encrypted twice.

(D) No, because AES is a bijective (one-to-one) function.

(E)

(F)

Solution: An adversary can XOR each block of the ciphertext with the IV and reduce the
scheme to AES-ECB. In other words, after XORing each block of the ciphertext with the IV, the
adversary will see the result of encrypting the message with regular ECB mode. Since regular
ECB mode is deterministic, the adversary can tell when the same block is encrypted twice.

For the following parts, consider this new AES scheme below.

AES-MULTI(K,M) = E(K, IV ⊕M1 ⊕M2 ⊕ · · · ⊕Mn).

AES-MULTI splits the message M into blocks of the appropriate size matching the underlying block
cipher. It XORs all of the message blocks together, and then XORs this result with the IV. The result’s
size is one block, which is fed into the block cipher. The output of the block cipher is the ciphertext.

Midterm Page 12 of 28 CS 161 – Spring 2021

Q4.2 (3 points) Alice encrypts a message with AES-MULTI. Can Bob decrypt the message?

(G) Yes, Bob can always decrypt.

(H) Yes, but only if the message is one block long.

(I) Yes, but only if the message is more than one block long.

(J) No, Bob can never decrypt.

(K)

(L)

Solution: This scheme is correct when the original message is one block long, i.e. C =
E(K, IV ⊕M1). Bob can decrypt by decrypting the block cipher and then XORing out the IV,
i.e. M1 = D(K,C)⊕ IV .

For messages longer than one block, Bob cannot decrypt, since this scheme is not a permutation.
Multiple messages can map to the same ciphertext. For example, consider a two-block message
where M1 is all zeros and M2 is all ones. The encryption is C = E(K, IV ⊕M1 ⊕M2) =
E(K, IV ⊕ all ones). Now consider another two-block message where M1 is all ones and
M2 is all zeros. The encryption is C = E(K, IV ⊕M1 ⊕M2) = E(K, IV ⊕ all ones). The
encryption is the same for two di�erent messages. Bob can’t tell which message Alice meant
to send, so he can’t decrypt.

Q4.3 (3 points) Eve intercepts a ciphertext encrypted with AES-MULTI. Can Eve learn any information
about the plaintext?

(A) Yes, Eve can always learn something about the plaintext.

(B) Yes, but only if the message is one block long.

(C) Yes, but only if the message is more than one block long.

(D) No, Eve can never learn anything about the plaintext.

(E)

(F)

Solution: Recall that without the key, the block cipher output is computationally indistin-
guishable from random, so the ciphertext looks e�ectively random to Eve. Additionally, the IV
is di�erent every time, so Eve can’t deduce when the same message is sent twice.

Another way to see this is to recall AES-CBC. The �rst block of ciphertext encrypted with
CBC is: C1 = E(K,M1 ⊕ IV). This means that AES-MULTI is essentially encrypting the

Midterm Page 13 of 28 CS 161 – Spring 2021

one-block message M1 ⊕M2 ⊕ . . .⊕Mn with AES-CBC. Since AES-CBC is IND-CPA secure,
Eve cannot learn anything about the plaintext.

The following parts are independent of the previous parts.

Q4.4 (3 points) Recall CFB mode encryption: Ci = Mi ⊕ E(K,Ci−1), C0 = IV

Alice and Bob are using AES-CFB with reused IVs. What values can an eavesdropper Eve learn?
Select all that apply.

(G) The secret key

(H) Partial information about the plaintexts

(I) The exact length of the messages

(J) None of the above

(K)

(L)

Solution: Reused IVs don’t help Eve learn about the secret key.

Reused IVs causes AES-CFB to become deterministic, so the attacker can learn when the same
message is encrypted twice. More generally, the attacker can see when two messages start
with the same blocks of plaintext.

CFB mode does not need padding, because the plaintext blocks are never passed through the
block cipher. Thus the exact length of the message is leaked in CFB mode.

Q4.5 (3 points) Recall CBC mode encryption: Ci = E(K,Mi ⊕ Ci−1), C0 = IV

Midterm Page 14 of 28 CS 161 – Spring 2021

Alice and Bob are using AES-CBC with reused IVs. Additionally, Alice and Bob prepend a shared
counter, incremented per message, to each message before it is encrypted. For example, if Alice’s
�rst message is “hello” and Bob’s reply is “world”, Alice will send “1 - hello” and Bob will send “2 -
world” encrypted the same key and IV.

What values can an eavesdropper Eve learn? Select all that apply.

(A) The secret key

(B) Partial information about the plaintexts

(C) The exact length of the messages

(D) None of the above

(E)

(F)

Solution: Reused IVs don’t help Eve learn about the secret key.

When IVs are reused in AES-CBC, the attacker can see when two messages start with the same
blocks of plaintext. However, because we add a counter to each message, messages will never
start with the same block of plaintext. Therefore, no information is leaked about the plaintext.

The exact length is not leaked in CBC because it uses padding.

This is the end of Q4. Leave the remaining subparts of Q4 blank on Gradescope,
if there are any. Proceed to Q5 on your answer sheet.

Midterm Page 15 of 28 CS 161 – Spring 2021

Q5 Socially Distant Coin Flipping (18 points)
Alice and Bob want to �ip a coin to settle a bet, but they can’t meet in person. They both suspect that
the other person might try to cheat to win the bet, so they need your help to construct a cryptographic
coin-�ipping scheme.

In general, a coin-�ipping scheme works as follows:

1. Alice makes a guess b (where b is a bit, 0 for heads and 1 for tails). She locks in her guess by
generating a value C(b) called the commitment. Alice sends the commitment to Bob.

2. Bob �ips the coin and reports the result of the �ip to Alice.

3. Alice reveals her guess b and optionally sends some additional information for veri�cation. Bob
can use this additional information to check that Alice’s revealed guess matches her commitment.

A secure coin-�ipping scheme must have two properties to prevent cheating:

• Hiding: The commitment C(b) without any additional veri�cation information must leak no
information about Alice’s guess b. Otherwise, Bob could cheat by deducing that Alice guessed
heads and claim that he �ipped tails.

• Binding: The commitment must bind Alice to her guess—that is, Alice should not be able to
change her guess after she has sent her commitment to Bob. In other words, Alice should not be
able to guess heads, send a commitment for heads, and then claim that she guessed tails, without
being detected by Bob.

For each scheme below, determine whether a scheme ful�lls the binding property, the hiding property,
both, or neither. In all questions, ‖ denotes concatenation.

Q5.1 (3 points) Commitment: Alice sends her guess to Bob: C(b) = b.

Veri�cation: Alice reveals her guess. Bob checks that Alice’s guess matches her commitment, i.e.
he checks that C(b) = b.

(A) Hiding only

(B) Binding only

(C) Neither property

(D) Both properties

(E)

(F)

Solution: Alice sends her guess to Bob directly in the commitment, so Bob can trivially learn
Alice’s guess. Therefore, the scheme is not hiding.

Alice sends her guess to Bob directly in the commitment, so she cannot change her guess after
she has sent her commitment. Therefore, the scheme is binding.

Q5.2 (3 points) Commitment: Alice generates a random secret key k and then encrypts her guess with
a secure block cipher: C(b) = E(k, b).

Veri�cation: Alice reveals her guess and the key k. Bob decrypts the commitment and veri�es that
it matches Alice’s guess, i.e. he checks that D(k,C(b)) = b.

Assume that encryption will automatically pad to the block size and decryption will unpad to the
orginal message.

Midterm Page 16 of 28 CS 161 – Spring 2021

(G) Hiding only

(H) Binding only

(I) Neither property

(J) Both properties

(K)

(L)

Solution: Because E is a secure block cipher, its output is computationally indistinguishable
from random. Given the ciphertext E(k, b), Bob cannot learn anything about the plaintext b
without knowing k. Therefore, the scheme is hiding.

Note that although E is not IND-CPA (since it’s deterministic), in this threat model, we are
only using E once, so Bob will not be able to deduce when the same message is sent twice.
Put another way, in the IND-CPA game, Bob has no encryption oracle; he can’t ask Alice to
encrypt arbitrary messages for him.

E is a permutation (it maps each unique message to a unique output), so E(k, 0) 6= E(k, 1)→
C(0) 6= C(1). This means Alice cannot send E(k, 0) and then reveal that she guessed 1 with
the key k. Therefore, the scheme is binding.

Note that Alice could try announcing a di�erent key k′ such that E(k, 0) = E(k′, 1). In this
scenario, she would send E(k, 0) as her commitment, then announce that she guessed 1 with
the key k′. However, because the behavior of E is computationally indistinguishable from
random, Alice would be unable to �nd such a k′ in any practical amount of time.

Q5.3 (6 points) Commitment: Alice picks a random bit b′ and XORs her guess with that bit: C(b) = b⊕b′.

Veri�cation: Alice reveals her guess and the random bit b′. Bob checks if Alice’s guess, XORed with
b′, is equal to her commitment, i.e. he checks that C(b) = b⊕ b′.

If you answered that the scheme is binding, write one sentence explaining why. If you answered
that the scheme is not binding, write one sentence explaining how Alice can guess heads (0) and
claim that she guessed tails (1).

Enter your answer in the text box on Gradescope.

(A) Hiding only

(B) Binding only

(C) Neither property

(D) Both properties

(E)

(F)

Solution: Regardless of Alice’s guess, C(b) = b ⊕ b′ is 0 with probability 1/2 and 1 with
probability 1/2. If her guess is 0, b′ = 0 → C(b) = 0 with probability 1/2 and b′ = 1 →
C(b) = 1 with probability 1/2. Likewise, if her guess is 1, b′ = 0→ C(b) = 1 with probability
1/2 and b′ = 1→ C(b) = 0 with probability 1/2. Bob sees a random bit no matter what Alice
guessed. Therefore, the scheme is hiding.

Alice can guess 0, pick b′ = 1, send C(b) = 0⊕ 1 = 1, claim that she guessed 1, and send Bob
b′ = 0. Bob would check that C(b) = b⊕ b′ → 1 = 1⊕ 0, and be fooled into thinking Alice
guessed 1.

Midterm Page 17 of 28 CS 161 – Spring 2021

More generally, Alice can lie about what b′ she picked in order to force Bob’s check to succeed.
Therefore, the scheme is not binding.

Q5.4 (6 points) In this part, p is a publicly known, large prime number; g is a publicly known generator
modulo p; and a is another publicly known large number modulo p.

Commitment: Alice calculates C(b) = ga+b mod p.

Veri�cation: Alice reveals her guess. Bob checks that C(b) = ga+b mod p.

If you answered that the scheme is hiding, write one sentence explaining why. If you answered
that the scheme is not hiding, write one sentence explaining how Bob can learn Alice’s guess.

Enter your answer in the text box on Gradescope.

(G) Hiding only

(H) Binding only

(I) Neither property

(J) Both properties

(K)

(L)

Solution: a and g are public, and b can only take on 2 values, so Bob can calculate C(0) and
C(1), then compare the results to what Alice sent to deduce her guess. Therefore, the scheme
is not hiding.

Note that ga 6= ga+1 → C(0) 6= C(1). This means Alice cannot send C(0) = ga and then
reveal that she guessed 1, because Bob’s check that C(0) = ga+1 would fail. Therefore, the
scheme is binding.

This is the end of Q5. Leave the remaining subparts of Q5 blank on Gradescope,
if there are any. Proceed to Q6 on your answer sheet.

Midterm Page 18 of 28 CS 161 – Spring 2021

Q6 Stonks (22 points)
You are an engineer for the innovativeTM stock trading app Hobinrood, and you notice that after some
recent market shenanigans, attacks on your users’ accounts are through the roof. Hobinrood needs you
to analyze the security of a few potential password storage schemes.

In this question, H is a secure cryptographic hash function, ⊕ denotes bitwise XOR, and ‖ denotes
concatenation.

The attacker in this question has access to the entire password database, but no access to any data not
explicitly stored in the database. The database does not store any extra information besides what is
listed in each subpart. Each subpart is independent.

Assume that there are n users who each choose from a common pool of n possible passwords, and the
attacker has enough compute power to perform O(n) hashes, decryptions, XORs, and other computa-
tions.

For each of the following password storage schemes, select all statements that are guaranteed to be
true.

Q6.1 (3 points) For each user, the database stores (username, H(password)).

(A) The attacker can determine all pairs of users who share the same password.

(B) The attacker can learn all users’ passwords.

(C) The attacker can learn at least one user’s password.

(D) None of the above

(E)

(F)

Solution: There is no salt, so two users with the same password will have the same password
hash stored in the database. Therefore the attacker can see which users have the same password
without computing any hashes.

There is no salt, so the attacker can hash the entire dictionary and match hashes to learn all
users’ passwords.

The attacker can learn all users’ passwords, so they can learn at least one user’s password.

Q6.2 (3 points) For each user, the database stores (username, H(username)⊕ password).

You can assume that the output of H is at least as long as the maximum password length.

(G) The attacker can determine all pairs of users who share the same password.

(H) The attacker can learn all users’ passwords.

(I) The attacker can learn at least one user’s password.

Midterm Page 19 of 28 CS 161 – Spring 2021

(J) None of the above

(K)

(L)

Solution: Since usernames are public, an attacker can compute (H(username)⊕ password))⊕
H(username) to retrieve every user’s password in plaintext.

Q6.3 (3 points) For each user, the database stores (username, r,H(password‖r)).

r is a random 1024-bit value selected when the user creates their account.

(A) The attacker can determine all pairs of users who share the same password.

(B) The attacker can learn all users’ passwords.

(C) The attacker can learn at least one user’s password.

(D) None of the above

(E)

(F)

Solution: This is the salted password hash scheme from lecture. The attacker must run O
(
n2

)
hashes in order to reverse all passwords (since there are n users and n possible passwords),
instead of being able to pre-compute a dictionary of n passwords and check them against all
users in an O(2n) = O(n) attack.

Since passwords are salted, the attacker cannot determine if two users share the same password
unless they reverse the passwords �rst. As described above, this takes O

(
n2

)
time.

Q6.4 (3 points) For each user, the database stores (username,AES-CBC(k,H(password))).

AES-CBC denotes AES-CBC mode encryption, with a random, unpredictable IV used for each
encryption. k is a secret key that the password database knows, but the attacker doesn’t know.

(G) The attacker can determine all pairs of users who share the same password.

(H) The attacker can learn all users’ passwords.

(I) The attacker can learn at least one user’s password.

(J) None of the above

(K)

(L)

Midterm Page 20 of 28 CS 161 – Spring 2021

Solution: AES-CBC is IND-CPA secure, so an attacker cannot learn anything about the
passwords from the database.

In practice, this seems like a great solution since it resists all dictionary attacks, but note that
it is completely broken if the attacker learns k.

Q6.5 (3 points) Because usernames are often unique to a website, some websites opt to salt the password
hash with the username rather than a random number. Consider storing (username,
H(password‖username)) for each user. Brie�y describe one disadvantage of this scheme com-
pared to using random salts, i.e. storing (username, r,H(password‖r)).

Enter your answer in the text box on Gradescope.

(A) (B) (C) (D) (E) (F)

Solution: Usernames, while unique to a website, are de�nitely not unique globally. Users
who share the same username and password across multiple sites are vulnerable to dictionary
attacks on their speci�c username. Another reason is that usernames do not change when
the user changes their password, making a user’s password history more vulnerable to a
brute-force attack.

You realize that designing a secure password storage scheme can be hard and decide to think about
ways to let users log in without passwords.

Q6.6 (4 points) Which of the following protocols would allow you to verify a user’s identity? Assume
that you know the user’s public key, and the user’s private key has not been compromised. Select
all that apply.

(G) Encrypt a random value r with the user’s public key. The user tells you r.

(H) Give the user a random value r. The user signs r and sends you the signature.

(I) The user gives you a certi�cate with their public key, signed by a trustworthy certi�cate
authority.

(J) Perform Di�e-Hellman key exchange with the user to get a shared key k. The user tells you
k. (You can assume no MITM has tampered with the key exchange.)

(K) None of the above

(L)

Solution: Encrypting r works, because only the user with the corresponding private key can
decrypt r and tell you the value of r.

Signing r works, because only the user with the corresponding private key can sign r and give
you a valid signature.

Midterm Page 21 of 28 CS 161 – Spring 2021

Certi�cates are public, so the user giving you a certi�cate doesn’t tell you anything about their
identity.

Di�e-Hellman can be performed between any two users.

Hobinrood uses a certi�cate hierarchy to validate users’ public keys. In the hierarchy, a trusted certi�cate
authority (CA) issues certi�cates to apps such as Hobinrood. Each app then issues certi�cates for its
trusted users.

Q6.7 (3 points) An attacker shows you a valid certi�cate for the attacker’s public key that appears to
be signed by Hobinrood and a valid certi�cate for Hobinrood signed by the trusted CA. You know
that Hobinrood would never issue a certi�cate to the attacker. What could the attacker have done
to accomplish this? Select all that apply.

(A) Stolen the CA’s private key

(B) Stolen Hobinrood’s private key

(C) Stolen Hobinrood’s certi�cate

(D) None of the above

(E)

(F)

Solution: The attacker can steal Hobinrood’s private key to sign the certi�cate for the at-
tacker’s public key.

The attacker can steal the CA’s private key to sign a fake certi�cate for Hobinrood (containing
an attacker-chosen public key), then use the corresponding private key to sign the certi�cate
for the attacker.

Certi�cates are public, so stealing a certi�cate doesn’t help the attacker create valid certi�cates.

This is the end of Q6. Leave the remaining subparts of Q6 blank on Gradescope,
if there are any. Proceed to Q7 on your answer sheet.

Midterm Page 22 of 28 CS 161 – Spring 2021

Q7 Palindromify (31 points)
Consider the following C code:

1 s t ruc t f l a g s {
2 char debug [4] ;
3 char done [4] ;
4 } ;
5
6 void p a l i n d r o m i f y (char ∗ input , s t ruc t f l a g s ∗ f) {
7 s i z e _ t i = 0 ;
8 s i z e _ t j = s t r l e n (i n p u t) ;
9

10 while (j > i) {
11 i f (i n p u t [i] != i n p u t [j]) {
12 i n p u t [j] = i n p u t [i] ;
13 i f (s trncmp (" BBBB " , f −>debug , 4) == 0) {
14 p r i n t f (" Next : %s \ n " , i n p u t) ;
15 }
16 }
17 i ++ ; j − − ;
18 }
19 }
20
21 in t main (void) {
22 s t ruc t f l a g s f ;
23 char b u f f e r [8] ;
24 while (s trncmp ("XXXX" , f . done , 4) != 0) {
25 g e t s (b u f f e r) ;
26 p a l i n d r o m i f y (b u f f e r , &f) ;
27 }
28 return 0 ;
29 }

De�nitions of relevant C functions may be found on the last page of this exam.

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or saved
registers in all questions.

For parts 1–3, assume that no memory safety defenses are enabled.

Q7.1 (3 points) Which of the following lines contains a memory safety vulnerability?

(A) Line 10

(B) Line 12

(C) Line 24

(D) Line 25

(E)

(F)

Midterm Page 23 of 28 CS 161 – Spring 2021

Solution: Line 25 contains a vulnerable call to gets, which will allow us to over�ow buffer.

Q7.2 (3 points) Which of these inputs would cause the program to execute shellcode located at0xbfff34d0?

(G) '\x00' + (11 * 'A') + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

(H) '\x00' + (19 * 'A') + '\xd0\x34\xff\xbf'

(I) (20 * 'X') + '\xd0\x34\xff\xbf'

(J) '\x00' + (7 * 'A') + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

(K) (16 * 'X') + '\xd0\x34\xff\xbf'

(L) None of the above

Solution: First, notice that buffer resides in main, so we’re going to attempt to overwrite
the RIP of main in this attack. Here’s what the stack diagram looks like:

[4] MAIN RIP
[4] MAIN SFP
[4] f.done
[4] f.debug
[8] buffer
...

At a high level, we’re going to follow our traditional attack structure: write past the end of
buffer and replace the RIP with the address of our shellcode. However, in order to force this
program to actually execute that shellcode, there are two while loops that we need to break
out of.

After our input is copied into buffer, we will enter the palindromify method. At this point,
we need a way to skip the while loop that attempts to copy non-matching values from the
end of input to the beginning - if we don’t skip this function, the RIP in our attack will be
overwritten by the garbage at the beginning.

To skip this loop, we add a null terminator at the beginning of our exploit - consequently,
when strlen(input) is called, it will return 0. At this point, j > i will evaluate to false,
and we’ll skip over the loop.

Then, when the method returns, we need a way to break out of the while loop in main -
otherwise, our program will continue to run forever. To do this, we need to set the f.done
�ag on the stack to XXXX.

Because the struct resides above the bu�er on stack, we can do this by placing XXXX precisely
at the location of f.done, which resides 12 bytes above buffer.

With this information, our exploit looks like this:

Midterm Page 24 of 28 CS 161 – Spring 2021

'\x00' + (11 * 'A') + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

Q7.3 (3 points) Assume you did the previous part correctly. At what point will the instruction pointer
jump to the shellcode?

(A) Immediately afterpalindromify returns

(B) Immediately after main returns

(C) Immediately after gets returns

(D) Immediately after printf returns

(E)

(F)

Solution: Because we overwrite the RIP in main, the shellcode will begin executing when
main returns.

For parts 4–7, assume that stack canaries are enabled, and all 4 bytes of the canary are random and
not null1. Assume that gets will append a single null byte to your input.

Q7.4 (5 points) Which of the following values on the stack can we overwrite without writing to the
stack canary? Select all that apply.

(G) SFP of main

(H) RIP of palindromify

(I) RIP of main

(J) buffer

(K) f

(L) None of the above

Solution: The stack diagram looks like this:

[4] RIP of main
[4] SFP of main
[4] STACK CANARY
[4] f.done
[4] f.debug
[8] buffer
[4] &f
[4] &buffer
[4] RIP of palindromify
[4] SFP of palindromify
...

Our exploit starts writing at buffer and writes up the stack (towards higher addresses), so
we should be able to overwrite buffer and f without writing over the canary.

1Note that if the attacker is unlucky and one canary byte is 0 which might disrupt the over�ow the attacker can simply try
again as the target program will restart with a di�erent random canary.

Midterm Page 25 of 28 CS 161 – Spring 2021

Q7.5 (3 points) Suppose that we provide ABCDE as input to the program. When we enter the palindromify
function, what will be the initial value of j?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4 (F) 5

Solution: strlen("ABCDE") will return 5, so j will be set to 5.

This highlights an o�-by-one vulnerability in this code, where the code will index into the
NULL byte of the string rather than the last character one byte before it, enabling us to
overwrite the NULL byte with the 0th byte of the string.

Q7.6 (5 points) Provide the �rst line of an input that will allow you to redirect execution of this program
to shellcode located at 0xbfff34d0. Write your answer in Python 2 syntax (just like Project 1).
Enter your answer in the text box on Gradescope.

(G) (H) (I) (J) (K) (L)

Solution: This exploit follows the exploit from Project 1 Question 3. At a high level, this is
a two-part exploit; with our �rst input, we want to leak the value of the canary using the
printf in palindromify; with our second input, we want to write that value back to the
appropriate spot on the stack.

First, we need to identify what we need to set the �ags to. Notice how palindromify will
only call printf when f.debug is set to BBBB. Also, because this is a two-part exploit, we
want the while loop in main to continue running, so we need to make sure f.done is set to
anything except XXXX.

Additionally, to force printf to leak the canary, we need to ensure that there are no NULL
bytes between the start of buffer and the canary. As the problem states, gets adds a NULL
byte to the end of whatever input we provide to the program. Fortunately, as suggested by the
previous question, the NULL byte will be overwritten by the 0th byte of the string (Line 12).
Possible solutions are:

'B' * 15

('A' * 8) + ('B' * 4) + ('A' * 3)

The important thing is the 9th through 12th bytes are 'B'. Other solutions are possible.

Q7.7 (5 points) Provide the second line of an input that will allow you to redirect execution of this
program to shellcode located at 0xbfff34d0. You can use out as a variable that contains the
output from the �rst input. Write your answer in Python 2 syntax (just like Project 1). Enter your
answer in the text box on Gradescope.

(A) (B) (C) (D) (E) (F)

Midterm Page 26 of 28 CS 161 – Spring 2021

Solution: Now, we need to set f.done to XXXX—we don’t care about the value of f.debug.
We also want to make sure that we write the canary in the appropriate spot. The canary will
start at the 22th byte (0-indexed) and end at the 26th byte (noninclusive) of the input, since
bytes 0 through 15 are taken up by values on the stack (buffer and f) and bytes 16-21 are
taken by "Next: " (with a space at the end).

We also add a null terminator at the beginning of this attack in order to break out of the while
loop in palindromify, following the same logic in 7.2.

'\x00' + 'X' * 15 + out[22:26] + 'A' * 4 + '\xd0\x34\xff\xbf'

The important parts of the exploit: the �rst byte is null, the 13th through 16th bytes are 'X',
the 17th through 20th bytes are the canary, and the rip is overwritten with the address of
shellcode.

Other solutions are possible.

Q7.8 (4 points) Assume the shellcode from the earlier parts resides in the stack section of memory.
Which of the following would we be able to do if stack canaries and ASLR were both in use? Select
all that apply.

(G) Leak the stack canary

(H) Overwrite the value of struct flags f

(I) Overwrite the value of i and j

(J) Redirect execution to the shellcode using the method from parts 6–7

(K) None of the above

(L)

Solution: ASLR wouldn’t prevent us from writing to memory regions above the bu�er and
taking advantage of the earlier exploits to leak the canary, but it would prevent us from
redirecting execution to the shellcode using the exploit that we crafted in Q6-7, since that
shellcode memory address would change with every instance of the program.

This is the end of Q7. Leave the remaining subparts of Q7 blank on Gradescope,
if there are any. You have reached the end of the exam.

Midterm Page 27 of 28 CS 161 – Spring 2021

C Function Definitions
size_t strlen(const char *s);

The strlen() function calculates the length of the string pointed to by
s, excluding the terminating null byte ('\0').

int strncmp(const char *s1, const char *s2, size_t n);

The strncmp() function compares the first (at most) n bytes of two
strings s1 and s2. It returns an integer less than, equal to, or
greater than zero if s1 is found, respectively, to be less than, to
match, or be greater than s2.

char *strncpy(char *dest, const char *src, size_t n);

The strncpy() function copies the string pointed to by src, including
the terminating null byte ('\0'), to the buffer pointed to by dest.
The strings may not overlap, and at most n bytes of s are copied.
Warning: If there is no null byte among the first n bytes of src, the
string placed in dest will not be null-terminated.

If the length of src is less than n, strncpy() writes additional null
bytes to dest to ensure that a total of n bytes are written.

char *gets(char *s);

gets() reads a line from stdin into the buffer pointed to by s until
either a terminating newline or EOF, which it replaces with a null byte
('\0').

char *fgets(char *s, int size, FILE *stream);

fgets() reads in at most one less than size characters from stream and
stores them into the buffer pointed to by s. Reading stops after an
EOF or a newline. If a newline is read, it is stored into the buffer.
A terminating null byte ('\0') is stored after the last character in
the buffer

Midterm Page 28 of 28 CS 161 – Spring 2021

