
Popa & Wagner
Spring 2020

CS 161
Computer Security Midterm

Print your name: ,
(last) (�rst)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will
be reported to the Center for Student Conduct and may further result in partial or complete loss of credit.

Sign your name:

Print your SID:

Name of the person
sitting to your left:

Name of the person
sitting to your right:

You may consult one double-sided, handwritten sheet of paper of notes. You may not consult other notes
or textbooks. Calculators, computers, and other electronic devices are not permitted.

Bubble every item completely. Avoid using checkmarks or Xs.
If you want to unselect an option, erase it completely and clearly.

For questions with circular bubbles, you may select only one choice.

Unselected option (completely un�lled)

Only one selected option (completely �lled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares (completely �lled).

If you think a question is ambiguous, please come up to the front of the exam room to the TAs. We will not
answer your question directly. If we agree that the question is ambiguous we will add clari�cations to the
document projected in the exam rooms.

There is an appendix on the last page of the exam, containing all signatures of all C functions used on this
exam and a synopsis. Please do not remove this appendix from the exam.

You have 80 minutes. There are 7 questions of varying credit (100 points total).

Do not turn this page until your instructor tells you to do so.

Page 1 of 19

Grade distribution (out of 100 points):

Midterm Page 2 of 19 CS 161 – Spring 2020

Problem 1 Security Principles (10 points)
Select the best answer to each question.

(a) A company requires that employees change their work machines’ passwords every 30 days, but
many employees �nd memorizing a new password every month di�cult, so they either write it
down or make small changes to existing passwords. Which security principle does the company’s
policy violate?

Defense in depth

Consider human factors

Ensure complete mediation

Fail-safe defaults

Solution: Here is an article that discusses why password rotation should be phased out in
practice, if you’re interested in reading more.

(b) In the midst of a PG&E power outage, Carol downloads a simple mobile �ashlight app. As soon as
she clicks a button to turn on the �ashlight, the app requests permissions to access her phone’s
geolocation, address book, and microphone. Which security principle does this violate?

Security is economics

Separation of responsibility

Least privilege

Design in security from the start

Solution: A �ashlight application does not actually need these permissions in order to execute
its functionality. It is over-permissioning its access to sensitive resources, violating the principle
of least privilege.

(c) A private high school has 100 students, who each pay $10,000 in tuition each year. The principal
hires a CS 161 alum as a consultant, who discovers that the “My Finances” section of the website,
which controls students’ tuition, is vulnerable to a brute force attack. The consultant estimates
an attacker could rent enough compute power with $20 million to break the system, but tells the
principal not to worry because of which security principle?

Security is economics

Least privilege

Design in security from the start

Consider human factors

Solution: The website handles $1 million per year; not large enough that an attacker would
have an incentive to spend $20 million to steal it.

(d) The consultant notices that a single admin password provides access to all of the school’s funds
and advises the principal that this is dangerous. What principle would the consultant argue the
school is violating?

Don’t rely on security through obscurity

Separation of responsibility

Design security in from the start

Fail-safe defaults

Midterm Page 3 of 19 CS 161 – Spring 2020

https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes

(e) Course sta� at Stanford’s CS155 accidentally released their project with solutions in it! In order
to conceal what happened, they quickly re-released the project and didn’t mention what had
happened in the hope that no one would notice. This is an example of not following which security
principle?

Security is economics

Don’t rely on security through obscurity

Separation of responsibility

Know your threat model

Least privilege

None of these

Solution: Uhh, can you guess where we got the idea for this question? Hint: It wasn’t Stan-
ford...

Midterm Page 4 of 19 CS 161 – Spring 2020

Problem 2 Memory safety (14 points)

(a) True or False: In the last question of Project 1, ASLR prevents the attacker from knowing the
address of any instructions in memory.

True False

Solution: In that question, the data and text segments were not randomized, so the attacker
can �nd the address of program code and library code.

(b) True or False: An 8-byte stack canary is less secure than a 4-byte stack canary.

True False

Solution: A 8-byte canary is no worse, and possibly better. It might be better because it is
harder to guess, i.e., has more entropy.

(c) Format string vulnerabilities can allow the attacker to:

Read memory

Write memory

Execute Shellcode

None of these

Solution: When the attacker controls the format string, it is easy to read the stack with a
variety of format speci�ers. The %n identi�er lets us write to certain parts of memory, and in
some program lets us overwrite the RIP and execute shellcode.

(d) Which of the following memory safety hardening measures work by ensuring that all writeable
regions in memory are non-executable, and all executable regions in memory are non-writeable?

ASLR

Stack canaries

DEP (also known as WˆX or NX)

None of these

(e) Bear Systems hardens its code with both DEP (also known as WˆX or NX) and its own custom
variant of ASLR. Normally, ASLR chooses a random o�set for the stack and heap when the program
starts running. Bear Systems modi�es the compiler to choose a random o�set when the program
is compiled and hardcode this into the binary executable. Bear Systems ships the same executable
to all of its customers. What is the e�ect of this modi�cation to ASLR on security against memory
safety exploits?

This modi�cation makes security better.

This modi�cation has no signi�cant e�ect on security.

This modi�cation makes security worse.

Midterm Page 5 of 19 CS 161 – Spring 2020

Solution: This defeats the purpose of ASLR. Because the o�set is hardcoded into the ex-
ecutable, it will be the same for all customers (i.e., the addresses will be the same for all
customers). Thus, one customer can extract the o�set from their copy of the executable, and
then use it to infer the addresses used by other customers and attack other customers.

Midterm Page 6 of 19 CS 161 – Spring 2020

Problem 3 Symmetric-key Cryptography (16 points)

(a) True or False: AES-CBC mode requires both the sender and recipient to know the secret key
and IV before communication begins.

True False

Solution: Only the secret key must be known by both parties beforehand. The IV is sent by
the sender, as part of the ciphertext.

(b) True or False: AES-CTR mode with a non-repeating but predictable IV is IND-CPA secure.

True False

Solution: Knowing the IV doesn’t help the attacker since the block cipher is applied �rst,
and the output of the block cipher appears random.

(c) True or False: AES-CBC mode with a non-repeating but predictable IV is IND-CPA secure.

True False

Solution: See the Discussion Section 3 worksheet, Question 3(b).

(d) True or False: AES-ECB mode is IND-CPA secure if we prepend a random 16-byte value to the
message before encryption and then encrypt the whole thing.

True False

Solution: The same attacks apply: if the �rst two blocks of the message are equal, then this
fact will be detectable from the ciphertext, and so on. More generally, the attacker can just
throw away the �rst 16 bytes of the ciphertext, and the result is the ordinary AES-ECB mode
encryption of the message, which is vulnerable to all of the attacks mentioned in class.

Consider the following modi�ed version of CTR mode:

Ci = AESK (Pi ⊕ (I V ||i))

where || denotes concatenation and ⊕ denotes bitwise xor. In other words, the xor occurs before applying
the block cipher. As always, assume that the IV is sent with the ciphertext.

(e) True or False: If the IV is di�erent for each message but predictable, this mode is IND-CPA
secure.

True False

Midterm Page 7 of 19 CS 161 – Spring 2020

Solution: The attacks from Discussion Section 3 worksheet, Question 3(b), work here too.

A cryptography consultant suggests the following alternative mode:

Ci = AESK (Pi) ⊕ (I V ||i)

where || denotes concatenation and ⊕ denotes bitwise xor. In other words, the IV and counter are xored
to the output of the block cipher. As always, assume that the IV is sent with the ciphertext.

(f) True or False: If the IV is chosen randomly for each message, the consultant’s mode is IND-CPA
secure.

True False

Solution: An attacker can compute C′
i = Ci ⊕ (I V ||i). Then C′

1, C′
2,… is an AES-ECB mode

encryption of the plaintext, so we can apply all the attacks on ECB mode to this mode too.

Midterm Page 8 of 19 CS 161 – Spring 2020

Problem 4 So�ware Vulnerabilities (11 points)
Consider the following C code:

1 / / r e q u i r e s : s i s a v a l i d p o i n t e r , l e n <= s i z e (s)
2 void f (char ∗ s , s i z e _ t l e n) {
3 in t i , j ;
4 i = 0 ; j = 0 ;
5 while (j < l e n) {
6 / / i n v a r i a n t : ? ? ?
7 while (s [j] == ’ < ’)
8 j ++ ;
9 s [i] = s [j] ;

10 i ++ ; j ++ ;
11 }
12 }

(a) Assume we will only ever call f with arguments where s is a valid, non-null pointer to a bu�er of
length at least len, and that the attacker controls the data stored in s. Is this code memory-safe,
under those conditions?

Yes, it is memory-safe

No, it could write past the end of the bu�er

No, it could read past the end of the bu�er

No, it could write before the beginning of the bu�er

No, it could read before the beginning of the bu�er

Solution: This code can read past the end of the bu�er if the data in the bu�er ends with <,
since there is no bounds check in the innermost while loop.

(b) If you selected “Yes”, write a valid loop invariant for the place marked ???. If you selected “No”,
write an example value for s and len that would trigger a memory safety violation.

Solution: s = >>>>, len = 4. Many other answers are possible. The common element to
all of them is that s[len-1] == '>' (and if len is less than the size of the bu�er, then all
subsequent characters in the bu�er must also be '>').

As it happens, there is no integer over�ow bug here (e.g., with len == INT_MAX+1), because
C will cast both j and len to unsigned integer types before comparing them in line 5—but
I could understand how you might think that one is possible. For that reason, I would also
accept “No, it could read before the beginning of the bu�er” or “No, it could write before the
beginning of the bu�er” in part (a) if you listed an example in part (b) where len > INT_MAX.

Midterm Page 9 of 19 CS 161 – Spring 2020

Problem 5 Public Key Encryption (7 points)
The El Gamal encryption scheme is reproduced below:

• Key Generation: public key = (g, ℎ, p), where ℎ = gk (mod p), private key = k
• Encryption: c = (c1, c2) = (gr mod p,m×ℎr mod p), where r is randomly sampled from {1,… , p−
1}.

• Decryption: m = c−k1 × c2 (mod p)
Look at each scenario below and select the appropriate options.

(a) True or False: With El Gamal, it is not a problem if the adversary can learn the value of g
somehow.

True False

Solution: g is part of the public key, so it is �ne for it to be known to the public (including
the adversary).

(b) True or False: With El Gamal, it is not a problem if the value r used during encryption is
accidentally revealed after the encryption is complete.

True False

Solution: If the adversary learns r , they can compute c2ℎ−r mod p, and that will reveal the
message m.

Midterm Page 10 of 19 CS 161 – Spring 2020

Problem 6 Block Cipher Leakage (16 points)
A hospital keeps a record, for each patient, of the patient’s diseases. It is stored as a list of diseases
along with a boolean indicating whether the patient has that disease or not:

acatamathesia: 0;ear infection: 0;heart disease: 1;...;xerophthalmia: 1;

Each record is encrypted. Assume that each "disease name: 0;" is exactly 16 bytes long (one block),
disease names are all unique, and the list and order of diseases is public and the same for all patients.

A passive eavesdropper Eve intercepts two ciphertexts corresponding to the encryptions of Alice’s and
Bob’s records. Assume that Eve has no prior knowledge of the disease status of any of the hospital’s
patients. The hospital uses the same key and same IV for encrypting each record.

(a) If the hospital uses AES-CBC mode with the same IV for every record, which of the following are
true?

Mallory can learn every disease for which Alice’s boolean is equal to Bob’s boolean

Mallory can learn every disease for which Alice’s boolean is not equal to Bob’s boolean

Mallory can always learn one disease for which Alice’s boolean is equal to Bob’s boolean, if
any such disease exists

Mallory can always learn one disease for which Alice’s boolean is not equal to Bob’s boolean,
if any such disease exists

Mallory can never learn two diseases for which Alice’s boolean is equal to Bob’s boolean

Mallory can never learn two diseases for which Alice’s boolean is not equal to Bob’s boolean

Mallory can learn whether Alice and Bob have the same boolean for all diseases

Mallory cannot learn anything about Alice and Bob’s booleans

Solution: Because of the nature of CBC, the ciphertexts will be exactly the same until the
�rst di�erence – at which point all the subsequent ciphertexts will be di�erent. So Mallory
learns a variable number of diseases where Alice and Bob’s booleans are identical, and exactly
one disease where their booleans are di�erent (the �rst disease with a di�erent boolean).

Some people told us that they interpreted “can” in the �rst two options as “can sometimes”
(i.e., there exist situations where Mallory can). Since we put “can always” in several other
options but not in the �rst two (our mistake), we thought this was a reasonable interpretation.
So, we decided to also award credit if you selected both of the �rst two options, based on a
“can sometimes” interpretation for both (but not if you selected just one of them). For the �rst
two options, we are not awarding partial credit for getting just one of them correct.

Some people told us that they interpreted the next-to-last option as “for each disease, Mallory
can learn whether Alice and Bob have the same boolean for that disease.” We had been intending
this as “Mallory can learn whether (for all diseases, Alice and Bob have the same boolean)”,
but in retrospect, this was ambiguous. We decided to accept both interpretations and grade
accordingly.

Midterm Page 11 of 19 CS 161 – Spring 2020

(b) If the hospital uses AES-CTR mode with the same IV for every record, which are true?

Mallory can learn every disease for which Alice’s boolean is equal to Bob’s boolean

Mallory can learn every disease for which Alice’s boolean is not equal to Bob’s boolean

Mallory can always learn one disease for which Alice’s boolean is equal to Bob’s boolean, if
any such disease exists

Mallory can always learn one disease for which Alice’s boolean is not equal to Bob’s boolean,
if any such disease exists

Mallory can never learn two diseases for which Alice’s boolean is equal to Bob’s boolean

Mallory can never learn two diseases for which Alice’s boolean is not equal to Bob’s boolean

Mallory can learn whether Alice and Bob have the same boolean for all diseases

Mallory cannot learn anything about Alice and Bob’s booleans

Solution: Since CTR doesn’t have the same cascading e�ect as CBC, Mallory can tell for each
disease whether Alice’s boolean and Bob’s boolean are the same.

Midterm Page 12 of 19 CS 161 – Spring 2020

Problem 7 Memory safety exploits (26 points)
The following code allows you to print characters of your choice from a string. It runs on a 32-bit x86
system with stack canaries enabled, but no other memory defense methods in use. Assume local
variables are pushed onto the stack in the order that they are declared, and there is no extra padding,
saved registers, or exception handlers. (These are the same assumptions as in homework 1.) Note that
scanf("%d", &offset) reads a number from the input, converts it to an integer, and stores it in the
offset variable.

1 void foo () {
2 char buf [3 0 0] ;
3 g e t s (buf) ;
4 }
5
6 in t main () {
7 char ∗ p t r ;
8 in t o f f s e t = 0 ;
9 char i m p o r t a n t [1 2] = " s E c u R i t Y ! ! ! " ;

10 while (o f f s e t >= 0) {
11 s c a n f ("%d " , & o f f s e t) ;
12 p t r = i m p o r t a n t + o f f s e t ;
13 p r i n t f ("%c \ n " , ∗ p t r) ;
14 }
15 foo () ;
16 return 0 ;
17 }

(a) Draw the stack, when at the point in time when line 12 of the code is executing, by �lling in the
diagram below. Label the location of sfp, rip (saved return address), stack canary, and the ptr,
offset, and important variables, for main’s stack frame. Each empty box represents 4 bytes of
stack memory. If a value spans multiple boxes, label all of them.

Midterm Page 13 of 19 CS 161 – Spring 2020

Solution:

rip
sfp

canary
ptr

o�set
important
important
important

(b) Peyrin informs you that this code contains a vulnerability which leaks the value of main’s stack
canary. Which sequence of inputs would leak this information? Fill in the blanks below.

\n \n \n \n

Solution: Since bounds aren’t checked, use ptr to read o� the stack canary: 20\n 21\n 22\n
23\n

(c) Next, suppose you want to develop a reliable arbitrary-code-execution exploit that works by
overwriting foo’s entire return address, so that when foo returns, your shellcode will be executed.
You �rst supply the string from part (b) to learn the value of the stack canary, followed by the string
’-1\n’, followed by a carefully chosen third string of some length. Write the minimum possible
length of the third string, to achieve this. Assume your shellcode is 100 bytes long and it cannot be
shortened.

Solution: 312 bytes. The stack frame for foo looks like

rip
sfp

canary
buf
⋮

buf

We’re going to over�ow buf, so we need 300 bytes for buf, plus 4 bytes for foo’s canary, plus
4 bytes for foo’s sfp, plus 4 bytes for overwriting foo’s rip. We can store the shellcode within
buf, so we don’t need another 100 bytes for it. Notice that the canary is the same for every
function, so after learning main’s canary, we know that the same value will be used for foo as
well.

We’ll also accept 313, in case you thought that you need a newline at the end (gets doesn’t
actually require a newline—you could actually omit the newline and substitute it with end of
�le—but that’s beyond the scope of what we’re testing in this class).

(d) Your friend claims that it’s not necessary to overwrite the entire return address to achieve arbitrary
code execution: if you don’t get unlucky with where certain addresses happen to fall, it’s possible

Midterm Page 14 of 19 CS 161 – Spring 2020

to reduce the length of the third string in part (c) to 304 bytes or 305 bytes, using an exploit that
overwrites the least signi�cant byte of sfp. Is she right?

Yes No

Solution: This is like Project 1, Question 4.

Suppose we use a 304-byte string, that doesn’t contain any null bytes or newline characters.
gets() will append a null byte, so it will write 304 bytes plus a null byte. This overwrites
all of buf, overwrites foo’s canary, and then overwrites the least signi�cant byte of foo’s
sfp with a null byte. Because the least signi�cant byte of foo’s sfp has been replaced with
0x00, its value is now somewhat smaller (it now points somewhere lower in the stack), and it
is likely the sfp will now be pointing to somewhere in the middle of buf. After foo returns,
its sfp will be restored into %ebp. Now when main’s epilogue executes, it will store this value
into %esp, then pop 4 bytes from there, and then return, i.e., pop a 4-byte value and transfer
control there. We can anticipate where foo’s sfp was pointing, i.e., where in buf these 8 bytes
are located, and we can make sure that the second 4 bytes contain the address of our shellcode.
This will work as long as the original value of foo’s sfp doesn’t end in 0x00–0x37, since then
replacing it with 0x00 will decrease it by at least 0x38 bytes, which is enough that it points
into somewhere in buf with at least 8 bytes available for storing our bogus sfp and rip. Phew.
That was pretty complicated.

If you choose a string that ends in a newline, you’ll need 305 bytes, as gets replaces the
newline with a null byte.

(e) The developers propose to �x the program by replacing lines 12–13 with the following code. Fill in
the blank inside the if-statement to make the �x correct.

12 i f (____________________________________) {
13 p t r = i m p o r t a n t + o f f s e t ;
14 p r i n t f ("%c \ n " , ∗ p t r) ;
15 }

Solution: 0 <= offset && offset < 12 or0 <= offset && offset < sizeof(important)

Unfortunately the �x isn’t available yet. Unsettled by your exploit, the sysadmins enable ASLR for
the stack and the heap as a temporary defense for the rest of this question.

You discover that the code (text segment) is not randomized, and you learn the address of a ret
instruction. For the purpose of this question, you can assume that ret is a one-word instruction which
is equivalent to pop %eip. In other words, it loads the instruction at $esp into the $eip and increments
$esp by one word.

(f) Which exploit technique would be appropriate for an arbitrary code execution exploit against this
code, given this new information?

Midterm Page 15 of 19 CS 161 – Spring 2020

ROP

TOCTTOU

Overwrite the �rst byte of sfp

Exploit a format string vulnerability

Solution: You’ll need to use ROP.

I don’t know of any easy way to modify the exploit in part (d) to work in this setting (e.g., we
don’t know the address of our shellcode, so we can’t put a bogus rip pointing to our shellcode
in buf and hope the modi�ed sfp will point there).

(g) Provide bounds on x, such that the input ’x\n’ will cause ptr to point somewhere in the region
where buf will appear.

≤ x ≤

Solution: -312 ≤ x ≤ -13.

Since the o�set is signed we can input a negative number to move down the stack to foo’s
frame. The stack will look like this (with the stack frame for main on top, and the stack frame
for foo below it):

rip
sfp

canary
ptr

o�set
important
important
important

rip
sfp

canary
buf
⋮

buf

We count from the start of important to the �rst byte of buf: len(rip) + len(sfp) + len(canary)
+ len(buf) = 4 + 4 + 4 + 300 = 312 bytes. So we have -312 ≤ x ≤ -13.

(h) Your exploit constructs an input as follows: �rst supply the string from part (b) to learn the value
of the stack canary, followed by the string ’x\n’ (with x chosen somehow based on part (g)) to
set ptr appropriately, followed by a carefully chosen third string that is composed from multiple
pieces. Below, select all possibilities for how to choose the third string so that the shellcode will be
executed with probability at least 1/2.

Assume SHELLCODE is a 100-byte string containing the shellcode you want to execute, CANARY
is the 4-byte value of the canary (learned using the technique from part (a)), gadget is the 4-byte
address of the ret instruction you found, and NOPSLED is a 200-byte string containing many

Midterm Page 16 of 19 CS 161 – Spring 2020

NOP instructions. Beware that gets will replace the newline at the end of your third string with a
null byte, so your exploit might need to deal with this.

1. First 300 bytes of the third string:

SHELLCODE * 3

NOPSLED + SHELLCODE

SHELLCODE + ’a’ * 196 + CANARY

gadget * 75

Solution: Since the null byte from gets will overwrite the last byte of ptr (as explained
below), we need a NOP sled to give us a higher probability of reaching the shellcode.

2. Next 12 bytes of the third string:

gadget * 3

CANARY * 3

CANARY + gadget*2

gadget * 2 + CANARY

CANARY + ’a’ * 4 + CANARY

CANARY * 2 + ’a’ * 4

Solution: We need to overwrite the canary correctly, we don’t really care about the ebp, and
we want to overwrite the rip with the address of the ret instruction to begin execution of
our ROP chain (see below for a detailed explanation of the exploit).

3. Next bytes of the third string: (�ll in the blank with a Python expression; your expression may
reference SHELLCODE, NOP, CANARY, gadget, and ’a’s, though you won’t need them all)

Solution: gadget * 4

TL;DR: recursively chaining gadget will keep popping us up the stack until we reach ptr and
jump to our shellcode!

When putting together all the pieces, this exploit string overwrites all of buf with a NOP
sled and the shellcode, overwrites foo’s canary with the correct value, overwrites foo’s rip
with gadget, and overwrites the next four 4-byte words in the stack (all of important and
offset) with gadget as well, and �nally overwrites the least signi�cant byte of ptr with a
null byte. When foo returns, it will add 4 to %esp and transfer control to the address gadget.
At gadget there is a return instruction, so the CPU will execute another return instruction,
which will add 4 to %esp and transfer control to the next address on the stack—which also
happens to be gadget.

This continues for a while, until eventually we get to ptr and transfer control to the address
stored in ptr (which, remember, had its least signi�cant byte overwritten). Since gets appends
a null byte, the least signi�cant byte of ptr has been overwritten with a null byte, causing
ptr to point to an address lower on the stack than its value before the over�ow. In particular,
there is a good chance that it will be pointing into the middle of buf, so when the last return

Midterm Page 17 of 19 CS 161 – Spring 2020

instruction transfer control there, we’ll be transferring control into somewhere in the middle of
buf. The exact place in buf is random (it depends on the least signi�cant byte of the original
value of ptr, which is randomized by ASLR). However, since buf is big enough (300 > 0xff),
we have a high probability of landing somewhere in the NOP-sled and sliding to our shellcode.

This also explains why we need a NOP sled in part 1, since without the NOP sled we’d land
somewhere random in the middle of buf and it’s unlikely we’d hit exactly the start of the
shellcode.

Note that since ret exists in pretty much any given program, this ROP attack may be very
possible if you have an over�ow and a mutable pointer.

4. Final byte of the third string:
\n

Midterm Page 18 of 19 CS 161 – Spring 2020

Selected C Manual Pages
char *gets(char *s);

gets() reads a line from stdin into the buffer pointed to by
s until either a terminating newline or EOF, which it replaces
with a null byte ('\0').

int printf(const char *format, ...);

The functions in the printf() family produce output according to
a format. The functions printf() and vprintf() write output to
stdout, the standard output stream.

The format specifier %c prints a single character: the argument
is interpreted as a character and printed.

int scanf(const char *format, ...);

The scanf() family of functions scans input according to format
as described below. This format may contain conversion
specifications; the results from such conversions, if any, are
stored in the locations pointed to by the pointer arguments that
follow format.

The format specifier %d reads an integer, represented in decimal
notation, and writes it to the location pointed to by the argument.

Midterm Page 19 of 19 CS 161 – Spring 2020

