
Popa & Weaver
Spring 2019

CS 161
Computer Security Midterm 1

Print your name: ,
(last) (�rst)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will
be reported to the Center for Student Conduct and may further result in partial or complete loss of credit. I am
also aware that Nick Weaver in particular takes cheating personally and, like the Hulk®, you don’t want to see
him angry.

Sign your name:

Print your SID:

Name of the person
sitting to your left:

Name of the person
sitting to your right:

You may consult one double-sided, handwritten sheet of paper of notes. You may not consult other notes,
textbooks, etc. Calculators, computers, and other electronic devices are not permitted.

Bubble every item completely! Avoid using checkmarks, Xs, writing answers on the side, etc.. If you want
to unselect an option, erase it completely and clearly.

For questions with circular bubbles, you may select only one choice.

Unselected option (completely un�lled)

Only one selected option (completely �lled)

For questions with square checkboxes, you may select any number of choices (including none or all).

You can select

multiple squares (completely �lled).

If you think a question is ambiguous, please come up to the front of the exam room to the sta�. If we agree
that the question is ambiguous we will add clarifying assumptions to the central document projected in the
exam rooms.

You have 110 minutes. There are 8 questions, of varying credit (96 points total). The questions are of varying
di�culty, so avoid spending too long on any one question.

Do not turn this page until your instructor tells you to do so.

Page 1 of 17

Problem 1 Potpourri Question (16 points)

(a) True or False: Unlike CTR mode, CBC o�ers integrity against �ipping bits of the ciphertext.

True False

Solution: Bit �ipping in CBC can cause di�erent decryption result.

(b) True or False: ASLR helps prevent bu�er over�ow attacks by randomizing the relative position
of a bu�er with respect to the overwritable return instruction pointer on the stack.

True False

(c) True or False: ASLR helps prevent bu�er over�ow attacks by randomizing the relative order in
which function stack frames are placed on the stack.

True False

Solution: ASLR randomizes the start of di�erent memory sections, but does not a�ect the
order of each function’s stack frame.

(d) True or False: It is possible to use the ret2esp attack from Project 1 when W^X is enabled.

True False

Solution: As described, the ret2esp attack is not possible because the shellcode can only be
placed on the stack. W^X/NX/DEP will prevent the shellcode from executing, so the attack
will fail.

(e) True or False: Sandboxing di�erent parts of an application can help reduce the size of the TCB.

True False

(f) True or False: Symmetric key encryption is faster than asymmetric key encryption.

True False

(g) Let m be a message, let Ek be any IND-CPA encryption scheme and MACk be any secure MAC
function. Let k be a randomly generated key. Write C = Ek(m).

True or False: If an eavesdropper sees C || MACk(C), the message m is still con�dential.

Midterm 1 Page 2 of 17 CS 161 – Spring 2019

True False

Solution: Nope, reuses key k! It is incorrect in general to reuse a key for two di�erent
purposes, as discussed in the 2/19 and 2/21 lectures.

(h) Mallory is a man-in-the-middle attacker, but Alice and Bob want to send messages to each other
without her interference. Which of the following properties alone is enough to ensure that Mallory
can neither read nor tamper with any of their messages?

Con�dentiality

Integrity

Authenticity

Availability

Polytime Hardness

None of the above

Solution: None of the properties alone are enough.

Midterm 1 Page 3 of 17 CS 161 – Spring 2019

Problem 2 Greetings from Mallory (9 points)
The following program has two security-critical vulnerabilities. Appendix: See the Appendix for a
list of C functions.

1 void get_name (char ∗ prompt , char ∗ g r e e t i n g) {
2 p r i n t f (prompt) ;
3 in t f d = 0 ; / / s t d i n
4 char ∗ buf = g r e e t i n g + s t r l e n (g r e e t i n g) ; / / r ema in ing b u f f e r
5 s i z e _ t count = s i z eo f (g r e e t i n g) − s t r l e n (g r e e t i n g) ; / / s i z e l e f t
6 read (fd , buf , count) ;
7 }
8
9 in t main () {

10 char prompt [] = " P l e a s e e n t e r your name : \ n " ;
11 char g r e e t i n g [6 4] = " Welcome back , " ;
12 get_name (prompt , g r e e t i n g) ;
13 p r i n t f (g r e e t i n g) ;
14 }

Identify the two security-critical vulnerabilities in the code. For each vulnerability, provide the line num-
ber and a short explanation. (Grading Note: You will receive six points if you �nd one vulnerability,
and nine points if you �nd both vulnerabilities.)

(a) Vulnerability 1:

⋄ Line number: _______

⋄ Explanation: (20 words max)

(b) Vulnerability 2:

⋄ Line number: _______

⋄ Explanation: (20 words max)

Midterm 1 Page 4 of 17 CS 161 – Spring 2019

Solution:

• Vulnerability 1:

Line 5

sizeof(greeting) evaluates to sizeof(char *), which is 4 and not 64, so count
under�ows and becomes a large unsigned number. The read operation can then over�ow
past the end of the greeting bu�er.

This can be exploited by overwriting the saved return address of function main and
hijacking the control-�ow of the program.

• Vulnerability 2:

Line 13

String format vulnerability, since contents of the greeting argument are controlled by
the attacker, who can insert format modi�ers %s, %n, etc.

A string format vulnerability is very dangerous and can actually allow arbitrary code
execution through special use of %n and other formats.

• Another issue (partial credit):

Another issue with this program is that the greeting string is not guaranteed to be
null terminated after the read operation. This allows the printf function on line 13
to read past the end of the greeting bu�er. On this particular program, this is not
security-critical, because after the greeting bu�er it will �nd the prompt bu�er, which
is null terminated and doesn’t give any new information to the attacker.

Midterm 1 Page 5 of 17 CS 161 – Spring 2019

Problem 3 Prince of Security (8 points)

(a) Rather than using a password manager, you decide to hide your passwords under the directory
old-tax-returns/old-things/not-secret/passwords, reasoning that it is secure because
hackers won’t be able to �nd them. Which security principle does this violate?

Least privilege

Shannon’s maxim

Consider human factors

Know your threat model

(b) At night, you cannot enter Etcheverry without special cardkey access. However you can get around
this by going to the second �oor of Soda, and then using your cardkey to open the Etcheverry-Soda
door on the second �oor. Which security principle does this violate?

Ensure complete mediation

Shannon’s maxim

Consider human factors

Least privilege

(c) You enjoy CS 161 and decide to become the head TA! The front desk hands you physical keys:
some access the printing room and some access a closet full of exam questions. You give away only
the keys which access the printing room to the TAs in charge of printing discussion worksheets.
Which security principle did you consider?

Ensure complete mediation

Design in security from the start

Division of trust

Least privilege

(d) In certain government agencies, employees are required to use government-approved phones for
work. Some employees �nd these phones too di�cult to use, so they do work on their personal
phones instead. Which security principles does this violate?

Ensure complete mediation

Least privilege

Division of trust

Consider human factors

Midterm 1 Page 6 of 17 CS 161 – Spring 2019

Problem 4 AES-CBC-STAR (13 points)
Let Ek and Dk be the AES block cipher in encryption and decryption mode, respectively.

(a) We invent a new encryption scheme called AES-CBC-STAR. A message M is broken up into
plaintext blocks M1,… , Mn each of which is 128 bits. Our encryption procedure is:

C0 = IV (generated randomly),
Ci = Ek(Ci−1 ⊕ Mi) ⊕ Ci−1.

where ⊕ is bit-wise XOR.

⋄ Write the equation to decrypt Mi in terms of the ciphertext blocks and the key k.

Solution: Mi = Dk(Ci ⊕ Ci−1) ⊕ Ci−1.

(b) Mark each of the properties below that AES-CBC-STAR satis�es. Assume that the plaintexts are
100 blocks long, and that 10 ≤ i ≤ 20.

Encryption is parallelizable.

Decryption is parallelizable.

If Ci is lost, then Ci+1 can still be decrypted.

If we �ip the least signi�cant bit of Ci , this
always �ips the least signi�cant bit in Pi of
the decrypted plaintext.

If we �ip a bit ofMi and re-encrypt using the
same IV, the encryption is the same except
the corresponding bit of Ci is �ipped.

If Ci is lost, then Ci−1 can still be decrypted.

If Ci is lost, then Ci+2 can still be decrypted.

If Ci is lost, then Ci−2 can still be decrypted.

If we �ip the least signi�cant bit of Ci , this
always �ips the least signi�cant bit in Pi+1
of the decrypted plaintext.

It is not necessary to pad plaintext to the
blocksize of AES when encrypting with
AES-CBC-STAR.

(c) Now we consider a modi�ed version of AES-CBC-STAR, which we will call AES-CBC-STAR-STAR.
Instead of generating the IV randomly, the challenger uses a list of random numbers which are
public and known to the adversary. Let IVi be the IV which will be used to encrypt the ith message
from the adversary.

⋄ Argue that the adversary can win the IND-CPA game.

Solution: Adversary sends two arbitrary (unequal but equal length), one-block messages
(M,M ′) as the challenge. The resulting ciphertext is either C0 = IV0||Ek(IV0 ⊕ M) ⊕ IV0 or
C0 = IV0||Ek(IV0 ⊕ M ′) ⊕ IV0.

Next the adversary sends IV1 ⊕ IV0 ⊕ M . The resulting ciphertext is C1 = IV1||Ek(IV1 ⊕ (IV0 ⊕
IV1 ⊕ M)) ⊕ IV1, which simpli�es to IV1||Ek(IV0 ⊕ M) ⊕ IV1. If the second block of C1 ⊕ IV1
equals the second block of C0 ⊕ IV0, then the challenger encrypted M . Otherwise the challenger
encrypted M ′. Hence we break IND-CPA with advantage signi�cantly above 1

2 (in fact such
an adversary wins all the time).

Midterm 1 Page 7 of 17 CS 161 – Spring 2019

An alternative solution is to send the challenger ciphertexts M = IV1 and M ′ = anything else.
If the challenger encrypts M , the message received is Ek(0)⊕ IV1. Then for the second message,
send IV2. If the output ciphertext ⊕IV1⊕ IV2 equals the challenge ciphertext, then the challenger
encrypted M . Otherwise they encrypted M ′.

Midterm 1 Page 8 of 17 CS 161 – Spring 2019

Problem 5 Extreme conditioning (9 points)
Consider the following code:

1 in t my_strcmp (char ∗ s1 , char ∗ s2) {
2 s i z e _ t i = 0 ;
3 while (s1 [i]) {
4 / ∗ ∗ p a r t b ∗ ∗ /
5 i f (s1 [i] != s2 [i]) {
6 break ;
7 }
8 i ++ ;
9 }

10 char uc1 = ∗ s1 , uc2 = ∗ s2 ;
11 i f (uc1 < uc2) return −1 ;
12 return uc1 > uc2 ;
13 }

(a) Consider the preconditions necessary to ensure memory safety. What is required about null
termination and length of the strings?

⋄ Write at most two preconditions, of at most ten words each.

Solution: (1) s1 must be null terminated

(2) The length of s1 also cannot be greater than the length of s2 or s2 must be null terminated,
otherwise we would read past the end of s2.

(b) State one invariant at line 4 about s1 that is about memory safety. Do not include an invariant
which is already a precondition.

⋄ Write this invariant.

Solution: for all x in [0, i], s1[x] ! = ’\0’ OR 0 <= i < strlen(s1) [these two are equivalent]

Midterm 1 Page 9 of 17 CS 161 – Spring 2019

Problem 6 Please, Just Use HMAC (8 points)
Alice and Bob are partners struggling through their CS 161 project, and need to share code with one
another, but their only option is to pass messages through an insecure server in Soda. They are afraid
another student, Mallory, might read or tamper with the messages.

They have already established public-keys (PA and PB), secret keys (SA and SB) and two shared symmetric
keys (k and k′). Using these, the SHA3 cryptographic hash function (SHA3), and an IND-CPA secure
symmetric-key encryption (Enck), Alice proposes a set of ways to send her messages (M) to Bob. Note
that || denotes the concatenation operation.

(a) Mark which of her following proposals provide con�dentiality and allow Bob to retrieve the
message M in the presence of only passive adversaries. (Select all that apply.)

M || SHA3(M)

SHA3(M || k′)

M || SHA3(M || PB)

Enck(M)

M || SHA3(M || SA)

Enck(M) || SHA3(M || k′)

Solution:

Any protocol that provides the plaintext (M) in the clear does not provide con�dentiality. Enc
is an IND-CPA encryption function, as is by de�nition con�dential.

Since cryptographic hash functions are deterministic, they do not provide con�dentiality. In
particular, an attacker can tell if the same message is sent twice.

(b) Mark which of her following proposals provide integrity. (Select all that apply.)

M || SHA3(M)

SHA3(M || k′)

M || SHA3(M || PB)

Enck(M)

M || SHA3(M || SA)

Enck(M) || SHA3(M || k′)

Solution: Any proposal that does not include any secret information cannot provide integrity,
since the entire ciphertext can be recomputed by the adversary Mallory. This includes proposals
that use PB, since this is a publicly-known key.

H(M || K) fails to provide integrity, since the original message is not recoverable (Bob cannot
invert the cryptographic hash function). Bob does not have access to Alice’s secret key, and
can never compute H(M || SA) to verify that M was not tampered with.

Lastly, EncK (M) fails to provide integrity even though Mallory doesn’t know K: she doesn’t
have to create a valid encryption to tamper with the original. While tampered messages will
likely decrypt to random bits, this is still often useful (i.e., Alice is sending a new random key).

Midterm 1 Page 10 of 17 CS 161 – Spring 2019

Problem 7 ElGamal and friends (15 points)
Bob wants his pipes �xed and invites independent plumbers to send him bids for their services (i.e., the
fees they charge). Alice is a plumber and wants to submit a bid to Bob. Alice and Bob want to preserve
the con�dentiality of Alice’s bid, but the communication channel between them is insecure. Therefore,
they decide to use the ElGamal public key encryption scheme in order to communicate privately.

Instead of using the traditional version of the ElGamal scheme, Alice and Bob use the following variant.
As usual, Bob’s private key is x and his public key is PK = (p, g, ℎ), where ℎ = gx mod p. However, to send
a message M to Bob, Alice encrypts M as EncPK(M) = (s, t), where s = gr mod p and t = gM × ℎr mod p,
for a randomly chosen r .

(a) Consider two distinct messages m1 and m2. Let EncPK(m1) = (s1, t1) and EncPK(m2) = (s2, t2). For
the given variant of the ElGamal scheme, which of the following is true?

(s1 + s2 mod p, t1 + t2 mod p) is a possible value for EncPK(m1 +m2).

(s1 × s2 mod p, t1 × t2 mod p) is a possible value for EncPK(m1 +m2).

(s1 × s2 mod p, t1 × t2 mod p) is a possible value for EncPK(m1 ×m2).

(s1 + s2 mod p, t1 + t2 mod p) is a possible value for EncPK(m1 ×m2).

None of these

(b) In order to decrypt a ciphertext (s, t), Bob starts by calculating q = ts−x mod p. Assume that the
message M is between 0 and 1000. How can Bob recover M from q?

Solution: If Bob knows the possible set of messages, then he can pre-compute a lookup table
for values of q = gM mod p.

(c) Explain why Bob cannot e�ciently recover M from q if M is randomly chosen such that 0 ≤ M < p.

Solution: Requires solving the discrete log modp, which is thought to be computationally
hard.

Midterm 1 Page 11 of 17 CS 161 – Spring 2019

(d) Suppose Alice sends Bob a bid M0 = 500, encrypted under Bob’s public key. We let C0 = (s, t) be
the ciphertext here.

Mallory is an active man-in-the-middle attacker who knows Alice’s bid is M0 = 500. Mallory wants
to replace Alice’s bid with M1 = 999. To do that, Mallory intercepts C0 and replaces it with another
ciphertext C1. Mallory wishes that when Bob decrypts C1, Bob sees M1 = 999.

Describe how Mallory creates C1 in each of the following situations:

1. Mallory didn’t obtain C0, but knows Bob’s public key PK = (p, g, ℎ).

⋄ Question: How should Mallory create C1?

Solution: Mallory can simply encrypt M of her choice using Bob’s public key and replace
the ciphertext.

2. Mallory knows Alice’s ciphertext C0, but only knows p and g in Bob’s public key PK = (p, g, ℎ).
(That is to say, Mallory does not know ℎ.)

⋄ Question: How should Mallory create C1?

Solution: Mallory can create (s′, t′) = (s, tg499) (mod p).

Midterm 1 Page 12 of 17 CS 161 – Spring 2019

Problem 8 Canaries Schmanaries (18 points)
The following code runs on a 32-bit x86 system. Stack canaries are enabled, but other memory safety
defenses are disabled. As in Project 1, all four bytes of the canary are completely random.

The compiler does not rearrange stack variables. Note the volatile keyword on line 1: this means the
arguments s1 and s2 are loaded from memory whenever referenced by doit, instead of being stored
in registers. Appendix: See the Appendix for a list of C functions.

1 void d o i t (char ∗ vo l a t i l e s1 , char ∗ vo l a t i l e s2) {
2 char b u f f e r [1 6] ;
3 s t r c p y (b u f f e r , s1) ;
4 s t r c p y (s1 , s2) ;
5 p r i n t f ("%s \ n%s \ n%s \ n " , b u f f e r , s1 , s2) ;
6 }
7
8 in t main () {
9 char s1 [6 4] ; char s2 [6 4] ;

10 f g e t s (s1 , s i z eo f s1 , s t d i n) ;
11 f g e t s (s2 , s i z eo f s2 , s t d i n) ;
12 d o i t (s1 , s2) ;
13 }

(a) Which line contains a memory safety vulnerability? What is the name of the vulnerability present
on that line?

Solution: Line 3: bu�er over�ow.

(b) Complete the diagram of the stack, right before line 3. Assume normal (non-malicious) program
execution. You do not need to write the values on the stack, only the names. There are no extraneous
boxes. As in discussion, the bottom of the page represents the lower addresses.

compiler padding = 0x00000000

main’s canary

char s1 [64]

char s2 [64]

s2

s1

saved eip / rip

saved ebp / sfp

doit’s canary

char buffer[16]

Midterm 1 Page 13 of 17 CS 161 – Spring 2019

(c) Now we will exploit the program. There is already shellcode at the address 0xbfffdead. Using
gdb, you discovered that the address of main’s canary is 0xbfffdab4. Due to a bug in the
compiler, you discover that although stack canaries are present, they are not checked! Complete
the Python script below in order to successfully exploit the program.

Note: The Python syntax ’A’ * n indicates that the character ’A’ will be repeated n times. The
syntax \xRS indicates a byte with hex value 0xRS.

s1 = ’A’ * ____ + ’___’ + \

’___’

s2 = ’B’ * ____ + ’___’ + \

’___’

print s1
print s2

Solution:

s1 = ’A’ * 24 + ’\xad\xde\xff\xbf’
s2 = ’anything’

Note that there is a slight technical nit, since fgets adds a newline and a terminating NUL
character. This means that such a solution clobbers the address of s1. In practice this is unlikely
to be an issue, although one can get around it by writing the original values into s1 and s2.
We didn’t deduct points from solutions which failed to notice this issue.

(d) Unfortunately, the bug in the previous part was �xed, and now your exploit must successfully
bypass the stack canary. As in part (c), there is already shellcode at the address 0xbfffdead and
the address of main’s canary is 0xbfffdab4. Complete the Python script below in order to
successfully exploit the program.

Hint: You should do the following. Start by using your exploit from the part above. Overwrite
the arguments s1 and s2 of doit to ensure that the second strcpy will “�x” the canary. Note
that the main’s function frame has the same canary as the canary that should appear in doit’s
function frame. The use of the volatile keyword ensures that s1 and s2 are passed using their
values from the stack. Since your solution should overwrite the pointer s2, it does not matter what
it originally points to.

s1 = ’A’ * ____ + ’___’ + \

’___’ + \

’___’

s2 = ’not needed, see the hint’

Midterm 1 Page 14 of 17 CS 161 – Spring 2019

print s1
print s2

Solution:

s1 = ’A’ * 24 + ’\xad\xde\xff\xbf’+’\x20\xda\xff\xbf’+’\xb4\xda\xff\xbf’
s2 = ’not needed, see the hint’
print s1
print s2

Explanation: after the execution of the �rst strcpy on line 3, our stack looks as follows:

main’s canary

char s1[64]

char s2[64]

s2 = 0xbfffdab4

s1 = 0xbfffda20

saved eip = 0xbfffdead

saved ebp = AAAA

doit’s canary = AAAA

char buffer[16] = A...A

Even though the canary is messed up after the �rst strcpy, this does not cause the program
to exit. Stack canaries are only checked before we exit the function.

Note that we have now overwritten the arguments to doit. We have engineered the stack
such that s2 = &main’s canary and s1 = &doit’s canary. The next strcpy on line 4
therefore �xes doit’s canary. The compiler padding of all 0s is useful, because it acts as a
NUL-terminator for the strcpy. It does clobber the last byte of the saved ebp, but that doesn’t
matter since the shellcode will execute before this becomes a problem.

The exploit works with probability ≈ 63/64, since the canary might have a NUL byte, making
it impossible to copy via strcpy.

Note that an optimizing compiler might save the value of s1 in a register in between the two
strcpy calls, which would prevent this exploit, but the use of the volatile keyword prevents
this.

Midterm 1 Page 15 of 17 CS 161 – Spring 2019

Selected C Manual Pages
char *fgets(char *s, int size, FILE *stream);
fgets() reads in at most one less than _size_ characters from
stream and stores them into the buffer pointed to by _s_. Reading
stops after an EOF or a newline. If a newline is read, it is stored
into the buffer. A terminating null byte (’\0’) is stored after the
last character in the buffer.

int printf(const char *format, ...);
printf() produces output according to the format string _format_.

ssize_t read(int fd, void *buf, size_t count);
read() attempts to read up to _count_ bytes from file descriptor _fd_
into the buffer starting at _buf_.

char *strcpy(char *dest, const char *src);
The strcpy() function copies the string pointed to by _src_,
including the terminating null byte (’\0’), to the buffer pointed to
by _dest_.

size_t strlen(const char *s);
The strlen() function calculates the length of the string _s_,
excluding the terminating null byte (’\0’).

Midterm 1 Page 16 of 17 CS 161 – Spring 2019

Midterm 1 Page 17 of 17 CS 161 – Spring 2019

