
Weaver
Fall 2017

CS 161
Computer Security Midterm 1

Print your name: ,
(last) (first)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that any
academic misconduct will be reported to the Center for Student Conduct, and may result in
partial or complete loss of credit.

Sign your name:

Print your class account login: cs161- and SID:

Your TA’s name:

Your section time:

Exam # for person
sitting to your left:

Exam # for person
sitting to your right:

You may consult one sheet of paper (double-sided) of notes. You may not consult other notes,
textbooks, etc. Calculators, computers, and other electronic devices are not permitted.

You have 80 minutes. There are 6 questions, of varying credit (142 points total). The
questions are of varying difficulty, so avoid spending too long on any one question. Parts of
the exam will be graded automatically by scanning the bubbles you fill in, so please do
your best to fill them in somewhat completely. Don’t worry—if something goes wrong with
the scanning, you’ll have a chance to correct it during the regrade period.

If you have a question, raise your hand, and when an instructor motions to you,
come to them to ask the question.

Do not turn this page until your instructor tells you to do so.

Question: 1 2 3 4 5 6 Total

Points: 36 16 20 20 24 26 142

Score:

Page 1 of 14

Problem 1 Multiple Guess (36 points)

(a) (4 points) You are writing some encryption routines. In it you reuse a nonce in a
block cipher. Which are true? (Mark all which apply.)

If using CTR mode, you lose all con-
fidentiality against a known plain-
text attack.

If using CTR mode, you lose all con-
fidentiality against a chose cipher-
text attack.

Nick’s spirit will reach out from your
monitor and club you over the head
for needlessly writing cryptographic
code.

If using CFB mode, you lose IND-
CPA

If using CFB mode, you lose all con-
fidentiality against a known plain-
text attack.

If using CBC mode, you lose IND-
CPA

If using ECB mode, you never had
IND-CPA to lose

(b) (8 points) Mark all true statements:

Stack canaries can not protect
against all stack overflow attacks

A format-string vulnerability can
overwrite a saved return address
even when stack canaries are enabled

A one time pad is impractical be-
cause you can never reuse a one time
pad

ALSR, stack canaries, and NX all
combined are insufficient to prevent
exploitation of all stack overflow at-
tacks

RSA is only believed to be secure,
there is no actual proof

HMAC does not leak information
about the message if the underlying
hash is secure.

Authentication implicitly also pro-
vides data integrity

Salting a password does not prevent
offline brute force attacks

Failing to salt stored passwords
ususally indicates programmer neg-
ligence

(c) (4 points) You have multiple independent detectors in series so that if any detector
triggers you will notice the intruder. Which are true? (Mark all which apply.)

You are employing defense in depth.

Your false negative rate will de-
crease.

Your false positive rate will increase.

Your false positive rate will decrease.

Midterm 1 Page 2 of 14 CS 161 – FA 17

(d) (4 points) You have a non-executable stack and heap. Which are true? (Mark all
which apply.)

An attacker can write code into
memory to execute.

Buffer overflows are no longer ex-
ploitable

An attacker can use Return Oriented
Programming

Format-String vulnerabilities may
still be exploitable

(e) (4 points) Which are true about RSA encryption? (Mark all which apply.)

RSA encryption without padding is
IND-CPA

Padding involves simply adding 0s

RSA encryption provides integrity

RSA signatures provide integrity

(f) (4 points) Which of the following modes provides a guarentee of IND-CPA when
properly used? (Mark all which apply.)

One-Time Pad

ECB

CBC

CTR

(g) (4 points) Which of the following modes provides an integrity guarente? (Mark all
which apply.)

One-Time Pad

ECB

CBC

CTR

Midterm 1 Page 3 of 14 CS 161 – FA 17

(h) (4 points) Which of the following make offline dictionary attacks harder? (Mark
all which apply.)

Slower hash functions

Faster hash functions

Password Salt

Having users select high entropy
passwords

(i) (0 points) I am “Outis”?

Yes No

Midterm 1 Page 4 of 14 CS 161 – FA 17

Problem 2 A Random Attempt at a Random Number Generator (16 points)
Consider the following pseudo-code for a pRNG which has Seed, Generate, and Reseed
functions. Generate generates 32b values, and the LameRNG uses two cryptographic
primitives, a SecureHash (which produces a 256b value), and SecureEncrypt(M,key), a
secure block cipher operating on 32b blocks and which uses a 256b key

State = {key, ctr}

Seed (entropy) {

Key = SecureHash(entropy)

ctr = 0

}

Generate() {

Return SecureEncrypt(ctr++, key)

}

Reseed(entropy) {

Key = SecureHash(entropy)

}

(a) (4 points) Assume that the attacker doesn’t know the key and it is well seeded
with entropy. Will generate() produce values that an attacker can’t predict (appear
random to the attacker) for at least the first 10 outputs?

(b) (4 points) How many times can generate be called before it begins to repeat?

(c) (4 points) Does this algorithm provide rollback resistance?

(d) (4 points) There is a bug in Reseed(). Fix it:

Midterm 1 Page 5 of 14 CS 161 – FA 17

Problem 3 Lets Make a Hash of Things (20 points)
Consider the following small python program designed to select 10 “random” lines from
a file and print those out. The time.time() function is assumed to be super-precise,
measuring current time with nanosecond resolution, so that if you call it multiple times
you will get different values each time. As a reminder % is the old-school python string
format operation, and Nick is a bit Old Skool when it comes to Python (so "%s-%i" %

("foo", 32) will return the string “foo-32”), and digest() outputs the sha256 hash of
the string as a 32 byte array which, for the comparison operators < and >, is simply a
256b number.

1 #! / usr / bin /env python
2
3 import hash l ib , sys , time
4
5 hashes = {}
6
7 for l i n e in sys . s td in :
8 for x in range (10) :
9 tmp = ”%s−%i ” % (l i n e , x)

10 h = hash l i b . sha256 (tmp) . d i g e s t ()
11 i f x not in hashes or hashes [x] [0] > h :
12 hashes [x] = (h , l i n e)
13
14 for x in range (10) :
15 p r i n t hashes [x] [1]

For all the following questions consider it operating on a sample input file consisting
of 100 unique and random lines, 99 of which appear only once and one which appears
10,000 times.

(a) (4 points) When this program selects 10 random lines, can it ever select the same
line multiple times? Why or why not?

(b) (4 points) What is the probability that the first output is the line which repeats
10,000 times?

Midterm 1 Page 6 of 14 CS 161 – FA 17

(c) (4 points) What is the probability that the first output is the line which repeats
10,000 times, if line 9 is changed to tmp = "%s-%s" % (line, time.time())?

(d) (4 points) Consider a version which changes line 11 to if x not in hashes or

hashes[x][0] < h:. Both the original program and this version are run on an
input file containing 100 distinct lines. What is the probability that both versions
output the same first line?

(e) (4 points) Consider a version which changes line 9 to tmp = "%i-%s" % (x, line)

Both the original program and this version are run on an input file containing 100
distinct lines. What is the probability that both versions output the same first line?

Midterm 1 Page 7 of 14 CS 161 – FA 17

Problem 4 Reasoning About Memory Safety (20 points)
The following code takes two strings as arguments and returns a pointer to a new string
that represents their concatenation:

1 char ∗ concat (char s1 [] , char s2 [] , int n)
2 {
3 int i , j ;
4 int l en = s t r l e n (s1) + n ;
5 char ∗ s ;
6 s = mal loc (l en) ;
7 i f (! s) return NULL;
8 for (i =0; s1 [i] != ’ \0 ’ ; ++i)
9 s [i] = s1 [i] ;

10 for (j =0; s2 [j] != ’ \0 ’ && j < n ; ++j)
11 s [i+j] = s2 [j] ;
12 s [i+j] = ’ \0 ’ ;
13 return s ;
14 }

The function is intended to take two strings and return a new string representing their
concatenation of the first string with the first n characters of the second string. If a
problem occurs, the function’s expected behavior is undefined.

(a) For the three statements assigning array elements, write down Requires predicates
that must hold to make the assignments memory-safe:

1. /* "Requires" for line 9:

*

*

*/

s[i] = s1[i];

2. /* "Requires" for line 11:

*

*

*/

s[i+j] = s2[j];

3. /* "Requires" for line 12:

*

*

*/

s[i+j] = ’\0’;

Midterm 1 Page 8 of 14 CS 161 – FA 17

(b) Here is the same code again, with more space between the lines. Indicate changes
(new statements or alterations to the existing code, plus a relevant precondition for
calling the function) necessary to ensure memory safety. Do not change the types
of any of the variables or arguments.

/∗ Precondi t ion :
∗
∗
∗/

1 char ∗ concat (char s1 [] , char s2 [] , int n)

2 {

3 int i , j ;

4 int l en = s t r l e n (s1) + n ;

5 char ∗ s ;

6 s = mal loc (l en) ;

7 i f (! s) return NULL;

8 for (i =0; s1 [i] != ’ \0 ’ ; ++i)

9 s [i] = s1 [i] ;

10 for (j =0; s2 [j] != ’ \0 ’ && j < n ; ++j)

11 s [i+j] = s2 [j] ;

12 s [i+j] = ’ \0 ’ ;

13 return s ;

14 }

Midterm 1 Page 9 of 14 CS 161 – FA 17

Problem 5 Alternate Feedback (24 points)
The following is a diagram of the FFM (F*ed Feedback Mode) block cipher mode of
encryption. We assume that the block cipher is a secure block cipher with a 128b block
size and key size. Yes, indeed, the initial block encrypts the key with itself...

Figure 1: FFM Encryption Mode

(a) (4 points) Draw what the decryption mode will have to look like

(b) (4 points) If you reuse the IV for two secret messages, M and M ′, both using the
same key, producing two ciphertexts C and C ′ seen by the eavesdropper, what can
the eavesdroper learn? Assume that the first bit of M and M ′ are different but the
rest of the bits may or may not be the same.

Midterm 1 Page 10 of 14 CS 161 – FA 17

(c) (4 points) If the first bit of the ciphertext is corrupted in transmission after the
encryption is complete and then decrypted, which bits of the decrypted plaintext
will be corrupted? (Hint: which decrypted blocks are affected by the first block of
ciphertext)

(d) (4 points) Can this encryption algorithm be parallelized?

Yes No

(e) (4 points) Can the decryption be parallelized?

Yes No

(f) (4 points) Is this IND-CPA? Why or why not? (Hint: For IND-CPA, the game
can progress multiple times with the same key but a different IV each time and
the adversary should still not be able to distinguish which of the two messages is
encrypted.)

Midterm 1 Page 11 of 14 CS 161 – FA 17

Problem 6 The 68x Architecture (26 points)
Ben Bitdiddle, hack extrodinare, observes that the x86 architecture, where the stack
grows down, makes for particularly easy to exploit buffer overflow attacks since a local
variable in a buffer grows up to overwrite the saved return address on the stack.

So he proposes the 68x which effectively flips the logic. Rather than having the stack
grow down, the 68x has the stack grow up.

Figure 2: the 68x call frame

The idea is that since buffers write up, by placing the saved return address below a
vulnerable buffer the attacker can’t overwrite the return address.

Keeping the “upside down x86” theme, if there is a stack canary, it is located between
the saved EBP and the local variables on the stack and the stack canary, if it exists, is
a random 64b value. 68x is also a 32b architecture and, if ALSR is enabled, it needs
to align libraries such that each library starts with the lower 16b of its address as all 0s
and all libraries need to be located at an address higher than 0x7FFFFFFF.

Midterm 1 Page 12 of 14 CS 161 – FA 17

Consider the following simple program.

void vuln1(){

char buffer[16];

gets(buffer);

}

(a) (6 points) Is the simple program exploitable on 68x with a basic stack overflow
when the compiler doesn’t use stack canaries? Why or why not? (Hint: What does
the stack look like when you call gets())

(b) (4 points) Can the current location of the stack canary prevent an attacker from
changing the return address? Why or why not?

(c) (4 points) Can an attacker ever hope to “brute force” a stack canary on 68x? Why
or why not?

(d) (6 points) The attacker needs to either know or guess the location of a library when
attacking ALSR using return oriented programming (ROP). Under what conditions
does 68x prevent the attacker from using this technique? Assume that the target
program quickly restarts after it crashes.

Midterm 1 Page 13 of 14 CS 161 – FA 17

(e) (6 points) Consider this simple program

void vuln(){

char buf[256];

fgets(stdin,buf,8);

printf(buf);

}

The attacker wishes to determine the state of the stack canary, the function vuln

has to allocate 256 bytes on the stack for buf and no other space at the point when
printf is called. Can the attacker provide an input that will cause the printf to print
the value of the stack canary? Why or why not? (Hint: What does the call stack
look like when you call printf? What does printf think are the arguments to be
printed?)

Does your answer change if we replace char buf[256]; with char *buf = malloc(256);?

Midterm 1 Page 14 of 14 CS 161 – FA 17

